当前位置: 首页 > news >正文

如何通过HTTP API更新Doc

本文介绍如何通过HTTP API更新Collection中已存在的Doc。


说明

  1. 若更新Doc时指定id不存在,则本次更新Doc操作无效

  2. 如只更新部分属性fields,其他未更新属性fields默认被置为null

前提条件

  • 已创建Cluster:创建Cluster。

  • 已获得API-KEY:API-KEY管理。

Method与URL

HTTP

PUT https://{Endpoint}/v1/collections/{CollectionName}/docs

使用示例

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例需要参考新建Collection-使用示例提前创建好名称为quickstart的Collection

插入Doc

Shell

curl -XPUT \-H 'dashvector-auth-token: YOUR_API_KEY' \-H 'Content-Type: application/json' \-d '{"docs": [{"id": "1", "vector": [0.1, 0.2, 0.3, 0.4]}]}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/docs# example output:
# {"request_id":"b1ce1b30-14a2-4e38-9931-f0b832660da9","code":0,"message":"Success","output":[{"doc_op":"update","id":"1","code":0,"message":""}]}

插入带有Fields的Doc

Shell

curl -XPUT \-H 'dashvector-auth-token: YOUR_API_KEY' \-H 'Content-Type: application/json' \-d '{"docs": [{"id": "2", "vector": [0.2, 0.3, 0.4, 0.5], "fields": {"age": 70, "name": "zhangshan","anykey1": "str-value","anykey2": 1,"anykey3": true,"anykey4": 3.1415926}}]}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/docs# example output:
# {"request_id":"0d22a37f-e906-4121-8408-7f1b685bb211","code":0,"message":"Success","output":[{"doc_op":"update","id":"2","code":0,"message":""}]}

批量插入Doc

Shell

curl -XPUT \-H 'dashvector-auth-token: YOUR_API_KEY' \-H 'Content-Type: application/json' \-d '{ "docs": [ {"id": "3", "vector": [0.3, 0.4, 0.5, 0.6]},{"id": "4", "vector": [0.4, 0.5, 0.6, 0.7], "fields": {"age": 20, "name": "zhangsan"}},{"id": "5", "vector": [0.5, 0.6, 0.7, 0.8], "fields": {"anykey": "anyvalue"}}]}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/docs# example output:
# {"request_id":"d9a81bbc-7010-4902-a91c-7402e13143fa","code":0,"message":"Success","output":[{"doc_op":"update","id":"3","code":0,"message":""},{"doc_op":"update","id":"4","code":0,"message":""},{"doc_op":"update","id":"5","code":0,"message":""}]}

插入带有Sparse Vector的Doc

Shell

curl -XPUT \-H 'dashvector-auth-token: YOUR_API_KEY' \-H 'Content-Type: application/json' \-d '{"docs": [{"id": "6", "vector": [0.1, 0.2, 0.3, 0.4], "sparse_vector":{"1":0.4, "10000":0.6, "222222":0.8}}]}' https://YOUR_CLUSTER_ENDPOINT/v1/collections/quickstart/docs# example output:
# {"request_id":"bb28479a-1a54-4d0b-a083-6399ac7bceeb","code":0,"message":"Success","output":[{"doc_op":"update","id":"6","code":0,"message":""}]}

入参描述

参数

Location

类型

必填

说明

{Endpoint}

path

str

Cluster的Endpoint,可在控制台Cluster详情中查看

{CollectionName}

path

str

Collection名称

dashvector-auth-token

header

str

api-key

docs

body

array

待更新的Doc列表

partition

body

str

Partition名称

出参描述

字段

类型

描述

示例

code

int

返回值,参考返回状态码说明

0

message

str

返回消息

success

request_id

str

请求唯一id

19215409-ea66-4db9-8764-26ce2eb5bb99

output

array

返回更新的结果,DocOpResult列表

usage

map

对Serverless实例(按量付费)集合的Doc更新请求,成功后返回实际消耗的写请求单元数

{Usage: {write_units: 5}
}

相关文章:

如何通过HTTP API更新Doc

本文介绍如何通过HTTP API更新Collection中已存在的Doc。 说明 若更新Doc时指定id不存在,则本次更新Doc操作无效 如只更新部分属性fields,其他未更新属性fields默认被置为null 前提条件 已创建Cluster:创建Cluster。 已获得API-KEY&#…...

Qt5 中 QGroupBox 标题下沉问题解决

我们设置了QGroupBox 样式之后,发现标题下沉了,那么如何解决呢? QGroupBox {font: 12pt "微软雅黑";color:white;border:1px solid white;border-radius:6px; } 解决后的效果 下面是解决方法: QGroupBox {font: 12pt "微软雅黑";color:white;bo…...

[OpenGL]使用glsl实现smallpt

一、简介 本文介绍了如何使用 OpenGL,使用 glsl 语言在 Fragment shader 中实现 smallpt。程序完成后可以得到以下渲染结果(samples per pixel, spp 16)。在程序中按下A,W可以左右平移,按下W,S可以前后平移: 二、s…...

elementui的默认样式修改

今天用element ui ,做了个消息提示,发现提示的位置总是在上面,如图: 可是我想让提示的位置到下面来,该怎么办? 最后还是看了官方的api 原来有个自定义样式属性 customClass 设置下就好了 js代码 css代码…...

mysql的主从配置

#mysql数据库 #主从 MySQL数据库主从配置 1.MySQL主从介绍 MySQL 主从又叫做 Replication、AB 复制。简单讲就是 A 和 B 两台机器做主 从后,在 A 上写数据,另外一台 B 也会跟着写数据,两者数据实时同步的。 MySQL 主从是基于 binlog 的&…...

CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比

CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比 目录 CPO-CNN-GRU-Attention、CNN-GRU-Attention、CPO-CNN-GRU、CNN-GRU四模型多变量时序预测对比预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于CPO-CNN-GRU-Attention、…...

深入了解PINN:物理信息神经网络(Physics-Informed Neural Networks)

1. 什么是PINN(物理信息神经网络)? 物理信息神经网络(PINN,Physics-Informed Neural Networks)是一类通过结合神经网络和物理方程的深度学习方法。其主要特点是将物理系统的约束条件(如偏微分方…...

人形机器人全身运动规划相关资料与文章

1.HumanPlus: Humanoid Shadowing and Imitation from Humans 文章地址:[2406.10454] HumanPlus: Humanoid Shadowing and Imitation from Humans 代码地址:MarkFzp/humanplus: [CoRL 2024] HumanPlus: Humanoid Shadowing and Imitation from Humans …...

使用uWSGI将Flask应用部署到生产环境

使用uWSGI将Flask应用部署到生产环境: 1、安装uWSGI conda install -c conda-forge uwsgi(pip install uwsgi会报错) 2、配置uWSGI 在python程序的同一文件夹下创建 uwsgi.ini文件,文件内容如下表。 需要按照实际情况修改文件名称…...

微服务监控工具Grafana

目录 前言 服务介绍 Grafana:数据可视化和展示 Prometheus:时序数据监控 Loki:日志管理 工具使用 安装 配置 Grafana 数据源​编辑 Go Web 项目上报数据 Prometheus 指标上报 Loki 日志上报 数据查看 前言 随着微服务的盛行&…...

用户界面的UML建模06

4.1 抽象表示层的结构(Abstract Presentation Structure) 如图6 所示,抽象表示层模型具有一个顶层的容器(container),《apm》AbstractForm,其包含了许多组件,《apm》AbstractCompon…...

【力扣刷题第一天】63.不同路径Ⅱ

63.不同路径Ⅱ 🚀 题目 题目来源:leetcode 63. 不同路径Ⅱ:63. 不同路径 II - 力扣(LeetCode); 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角(即 obstacleGrid[0][0]&#xf…...

如何优化Python网络爬虫的数据清洗流程,以提升数据质量并有效应对网站反爬虫机制?

优化爬虫数据清洗流程,应对反爬虫机制 一、数据清洗的重要性 在网络爬虫中,数据清洗是关键环节。打个比方,我们从网页抓取到的原始数据就像一堆杂乱的杂物,里面有各种格式、错误和重复信息。比如抓取到的文本可能包含HTML标签、…...

svn 相关应用与管理

文章目录 SVN 概要svn 权限控制svn 实操实例svn 备份 SVN 概要 一、SVN简介 Subversion(SVN)是一个开放源代码的版本控制系统,用于管理文件和目录的版本。它采用集中式的版本控制方式,即有一个中央仓库存储所有文件的版本信息&a…...

THM:Mouse Trap[WriteUP]

目录 连接至THM服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 提取扫描结果中的端口号 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机UDP常用端口进行开放扫描 使用smbmap尝试枚举靶机…...

Nginx详细安装配置过程

目录 1.nginx环境准备 1.1 在配置好yum源之后,安装如下的编译工具 1.2 安装nginx所需的依赖库 1.3 关闭防火墙,selinux,并确保网络正常 2.nginx的编译安装 2.1从nginx官网复制下载链接,wget 下载 2.2? 解压nginx源代码 2…...

目标检测入门指南:从原理到实践

目录 1. 数据准备与预处理 2. 模型架构设计 2.1 特征提取网络原理 2.2 区域提议网络(RPN)原理 2.3 特征金字塔网络(FPN)原理 2.4 边界框回归原理 2.5 非极大值抑制(NMS)原理 2.6 多尺度训练与测试原理 2.7 损失函数设计原理 3. 损失函数设计 4. 训练策略优化 5. 后…...

2024 高通边缘智能创新应用大赛智能边缘计算赛道冠军方案解读

2024 高通边缘智能创新应用大赛聚焦不同细分领域的边缘智能创新应用落地,共设立三大热门领域赛道——工业智能质检赛道、智能边缘计算赛道和智能机器人赛道。本文为智能边缘计算赛道冠军项目《端侧大模型智能翻译机》的开发思路与成果分享。 赛题要求 聚焦边缘智能…...

tcpdump 网络数据包分析工具

简介 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支持针对网络层、协议、主机、网络或端口的…...

鱼眼相机模型与去畸变实现

1.坐标系说明 鱼眼相机模型涉及到世界坐标系、相机坐标系、图像坐标系、像素坐标系之间的转换关系。对于分析鱼眼相机模型,假定世界坐标系下的坐标点,经过外参矩阵的变换转到相机坐标系,相机坐标再经过内参转换到像素坐标,具体如下 进一步进…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...