当前位置: 首页 > news >正文

深入了解PINN:物理信息神经网络(Physics-Informed Neural Networks)

1. 什么是PINN(物理信息神经网络)?

物理信息神经网络(PINN,Physics-Informed Neural Networks)是一类通过结合神经网络和物理方程的深度学习方法。其主要特点是将物理系统的约束条件(如偏微分方程)融入到神经网络的训练过程中,使得网络不仅能学习数据中的模式,还能满足物理规律。

在传统的神经网络训练中,网络的目标是通过数据来拟合目标函数,而在PINN中,网络不仅仅依赖数据,还会受到物理方程的约束。例如,对于涉及流体动力学、热传导、结构力学等领域的问题,PINN能够在没有大量实验数据的情况下,通过物理方程来精确地描述系统的行为。

2. PINN的基本原理

2.1 神经网络与物理方程的结合

PINN通过修改传统的损失函数,加入物理约束(如偏微分方程的残差),从而确保神经网络的输出不仅能够拟合训练数据,还能满足物理系统的动态行为。

假设我们有一个带有物理约束的模型,例如流体动力学的Navier-Stokes方程或者热传导方程。PINN的损失函数由两部分组成:

  • 数据损失:基于观测数据或边界条件。
  • 物理损失:基于物理方程的残差,例如通过将网络的输出代入PDE(偏微分方程)计算得到的误差。

损失函数通常表示为:
L PINN = L data + L physics \mathcal{L}_{\text{PINN}} = \mathcal{L}_{\text{data}} + \mathcal{L}_{\text{physics}} LPINN=Ldata+Lphysics
其中:

  • L data \mathcal{L}_{\text{data}} Ldata:数据拟合损失,例如均方误差(MSE)。
  • L physics \mathcal{L}_{\text{physics}} Lphysics:物理约束损失,例如通过PDE计算出的残差。
2.2 物理约束如何纳入

物理方程通常是以偏微分方程(PDE)的形式给出的,PINN通过网络的输出代入PDE计算出残差,并在训练过程中最小化这些残差。常见的物理方程包括:

  • Navier-Stokes 方程:描述流体动力学的基本方程。
  • 热传导方程:描述热量在物体中的传播。
  • 波动方程:描述波在介质中的传播。

通过优化神经网络的权重,使得网络输出不仅符合数据,还能满足这些物理方程,从而达到一种融合数据和物理规律的训练方式。

2.3 网络结构与训练过程

PINN的训练过程与传统神经网络相似,使用反向传播算法来优化网络参数。不同之处在于,训练时除了依赖训练数据外,还会计算物理方程的残差,并将其加入到总的损失函数中。

3. PINN的应用领域

PINN有广泛的应用场景,尤其是在需要处理物理系统模拟而又缺乏大量数据的领域。以下是一些典型的应用领域:

3.1 流体力学

在流体力学中,Navier-Stokes 方程描述了流体的动力学行为。使用传统的数值方法(如有限元法、有限差分法)求解这些方程时,通常需要大量的网格划分和计算量。而通过PINN,我们可以通过训练一个神经网络来直接拟合这些方程,解决流体的速度、压力等问题,且不依赖于传统的网格离散化。

3.2 热传导

在热传导问题中,我们通常需要解决热传导方程,来描述热量如何在物体中传递。PINN可以通过将物理方程与神经网络结合,求解温度分布,减少对传统数值方法的依赖,尤其是在复杂几何形状的情况下。

3.3 结构力学

在结构力学中,PINN可用于求解结构的变形、应力等问题。例如,PINN可以用来描述梁、板、框架等结构的力学行为,从而预测材料在不同加载条件下的响应。

3.4 材料科学

在材料科学中,PINN可用于模拟材料的性能,如弹性、塑性、热膨胀等。在这种情况下,PINN可以帮助研究人员在没有大量实验数据的情况下,通过物理规律推导出材料行为。

4. PINN的优势与挑战

4.1 优势
  • 无需大量标注数据:PINN能够通过物理方程进行训练,极大减少了对大量标注数据的需求。传统的机器学习方法往往需要大量的实验数据,而PINN可以通过少量数据加上物理方程的约束来进行训练。
  • 物理一致性:通过引入物理方程,PINN能够确保模型的预测符合实际的物理规律,从而避免了数据驱动模型可能出现的不合理结果。
  • 高效性:传统的数值方法(如有限元法)在处理复杂几何和多尺度问题时计算量较大,而PINN能够直接通过神经网络进行高效求解。
4.2 挑战
  • 训练难度:PINN的训练过程通常较为复杂,因为物理方程的残差计算可能引入更多的复杂性,训练过程可能会受到梯度消失或爆炸的影响。
  • 求解精度:虽然PINN能够结合物理规律进行训练,但在某些复杂问题中,仍然需要精心设计网络架构和损失函数,以确保模型的精度。
  • 计算资源:尽管PINN能减少对传统网格划分的需求,但在某些应用中仍然可能需要较大的计算资源来进行网络训练,尤其是当处理高维问题时。

5. PINN的实现示例

让我们来实现一个简单的PINN示例,解决一维热传导方程。假设我们要解如下的热传导方程:

∂ u ∂ t = α ∂ 2 u ∂ x 2 \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} tu=αx22u

其中, α \alpha α 是热扩散系数, u ( x , t ) u(x,t) u(x,t) 是温度分布。我们希望通过PINN来求解这个方程。

在程序中,物理损失为
∂ u ∂ t − α ∂ 2 u ∂ x 2 \frac{\partial u}{\partial t} - \alpha \frac{\partial^2 u}{\partial x^2} tuαx22u
让它尽量趋于0。

5.1 构建神经网络

我们使用PyTorch来实现一个简单的PINN模型。网络的输入为空间坐标 x x x 和时间 t t t,输出为温度 u ( x , t ) u(x,t) u(x,t)

import torch
import torch.nn as nnclass PINN(nn.Module):def __init__(self, layers):super(PINN, self).__init__()self.layers = nn.ModuleList()for i in range(len(layers) - 1):self.layers.append(nn.Linear(layers[i], layers[i+1]))nn.init.xavier_normal_(self.layers[i].weight)def forward(self, x, t):u = torch.cat((x, t), dim=1)for layer in self.layers:u = torch.tanh(layer(u))return u
5.2 定义物理损失函数

为了将物理方程纳入到训练过程中,我们需要计算热传导方程的残差。我们通过自动求导来计算温度的时间导数和空间导数,并将这些导数代入热传导方程中。

def physics_loss(model, x, t, alpha):u = model(x, t)# 计算 u_t 和 u_xxu_t = torch.autograd.grad(u, t, grad_outputs=torch.ones_like(u), create_graph=True)[0]u_xx = torch.autograd.grad(torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u), create_graph=True)[0], x, grad_outputs=torch.ones_like(u), create_graph=True)[0]# 计算残差residual = u_t - alpha * u_xxreturn torch.mean(residual**2)
5.3 训练模型

通过结合数据损失和物理损失,我们可以训练模型:

# 定义训练数据
x_train = torch.linspace(0, 1, 100, requires_grad=True).view(-1, 1)
t_train = torch.linspace(0, 1, 100, requires_grad=True).view(-1, 1)# 初始化模型
model = PINN([2, 50, 50, 1])# 设置优化器
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)# 训练过程
for epoch in range(10000):optimizer.zero_grad()# 计算物理损失loss = physics_loss(model, x_train, t_train, alpha=0.01)# 反向传播并优化loss.backward()optimizer.step()if epoch % 1000 == 0:print(f'Epoch [{epoch}], Loss: {loss.item()}')

6. 结语

物理信息神经网络(PINN)作为一种结合物理知识和数据驱动的深度学习方法,展现了其在科学计算和工程应用中的巨大潜力。通过融合物理方程,PINN能够在缺乏足够实验数据的情况下,提供高效且可靠的解决方案。随着研究的深入和技术的成熟,PINN有望在多个领域带来革命性的进展。

相关文章:

深入了解PINN:物理信息神经网络(Physics-Informed Neural Networks)

1. 什么是PINN(物理信息神经网络)? 物理信息神经网络(PINN,Physics-Informed Neural Networks)是一类通过结合神经网络和物理方程的深度学习方法。其主要特点是将物理系统的约束条件(如偏微分方…...

人形机器人全身运动规划相关资料与文章

1.HumanPlus: Humanoid Shadowing and Imitation from Humans 文章地址:[2406.10454] HumanPlus: Humanoid Shadowing and Imitation from Humans 代码地址:MarkFzp/humanplus: [CoRL 2024] HumanPlus: Humanoid Shadowing and Imitation from Humans …...

使用uWSGI将Flask应用部署到生产环境

使用uWSGI将Flask应用部署到生产环境: 1、安装uWSGI conda install -c conda-forge uwsgi(pip install uwsgi会报错) 2、配置uWSGI 在python程序的同一文件夹下创建 uwsgi.ini文件,文件内容如下表。 需要按照实际情况修改文件名称…...

微服务监控工具Grafana

目录 前言 服务介绍 Grafana:数据可视化和展示 Prometheus:时序数据监控 Loki:日志管理 工具使用 安装 配置 Grafana 数据源​编辑 Go Web 项目上报数据 Prometheus 指标上报 Loki 日志上报 数据查看 前言 随着微服务的盛行&…...

用户界面的UML建模06

4.1 抽象表示层的结构(Abstract Presentation Structure) 如图6 所示,抽象表示层模型具有一个顶层的容器(container),《apm》AbstractForm,其包含了许多组件,《apm》AbstractCompon…...

【力扣刷题第一天】63.不同路径Ⅱ

63.不同路径Ⅱ 🚀 题目 题目来源:leetcode 63. 不同路径Ⅱ:63. 不同路径 II - 力扣(LeetCode); 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角(即 obstacleGrid[0][0]&#xf…...

如何优化Python网络爬虫的数据清洗流程,以提升数据质量并有效应对网站反爬虫机制?

优化爬虫数据清洗流程,应对反爬虫机制 一、数据清洗的重要性 在网络爬虫中,数据清洗是关键环节。打个比方,我们从网页抓取到的原始数据就像一堆杂乱的杂物,里面有各种格式、错误和重复信息。比如抓取到的文本可能包含HTML标签、…...

svn 相关应用与管理

文章目录 SVN 概要svn 权限控制svn 实操实例svn 备份 SVN 概要 一、SVN简介 Subversion(SVN)是一个开放源代码的版本控制系统,用于管理文件和目录的版本。它采用集中式的版本控制方式,即有一个中央仓库存储所有文件的版本信息&a…...

THM:Mouse Trap[WriteUP]

目录 连接至THM服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 提取扫描结果中的端口号 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机UDP常用端口进行开放扫描 使用smbmap尝试枚举靶机…...

Nginx详细安装配置过程

目录 1.nginx环境准备 1.1 在配置好yum源之后,安装如下的编译工具 1.2 安装nginx所需的依赖库 1.3 关闭防火墙,selinux,并确保网络正常 2.nginx的编译安装 2.1从nginx官网复制下载链接,wget 下载 2.2? 解压nginx源代码 2…...

目标检测入门指南:从原理到实践

目录 1. 数据准备与预处理 2. 模型架构设计 2.1 特征提取网络原理 2.2 区域提议网络(RPN)原理 2.3 特征金字塔网络(FPN)原理 2.4 边界框回归原理 2.5 非极大值抑制(NMS)原理 2.6 多尺度训练与测试原理 2.7 损失函数设计原理 3. 损失函数设计 4. 训练策略优化 5. 后…...

2024 高通边缘智能创新应用大赛智能边缘计算赛道冠军方案解读

2024 高通边缘智能创新应用大赛聚焦不同细分领域的边缘智能创新应用落地,共设立三大热门领域赛道——工业智能质检赛道、智能边缘计算赛道和智能机器人赛道。本文为智能边缘计算赛道冠军项目《端侧大模型智能翻译机》的开发思路与成果分享。 赛题要求 聚焦边缘智能…...

tcpdump 网络数据包分析工具

简介 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支持针对网络层、协议、主机、网络或端口的…...

鱼眼相机模型与去畸变实现

1.坐标系说明 鱼眼相机模型涉及到世界坐标系、相机坐标系、图像坐标系、像素坐标系之间的转换关系。对于分析鱼眼相机模型,假定世界坐标系下的坐标点,经过外参矩阵的变换转到相机坐标系,相机坐标再经过内参转换到像素坐标,具体如下 进一步进…...

【Unity功能集】TextureShop纹理工坊(七)魔棒工具

项目源码:在终章发布 索引 魔棒工具PS魔棒工具魔棒工具功能点提炼TextureShop魔棒工具根据色差选取非连续区域中间镂空边框的流动虚线取消选区魔棒工具 魔棒工具,也既是通过颜色色差,在图像上选出自定义选区的工具(了解PS魔棒工具)。 PS魔棒工具 我们先来看看PS中的魔棒…...

ASP.NET Core Web API Hangfire

ASP.NET Core Web API Hangfire 前言一、安装二、相关代码1.代码片段2.代码片段3.运行效果 三、测试代码1.即发即弃作业2.延迟作业3.重复作业4.延续作业5.页面调度作业 前言 👨‍💻👨‍🌾📝记录学习成果,以…...

E-commerce .net+React(一)——项目初始化

文章目录 项目地址一、创建.Net环境1.1环境配置1.1.1 使用vscode创建webapi1.1.2 Clean architecture结构创建1.1.3 将创建好结构的项目添加到git里1.1.4 EF Core配置1. 在infrastructure里安装EF所需环境2. 创建Product数据模型3. 创建EF Core的DbContext 数据库上下文4. 创建…...

算法每日双题精讲 —— 滑动窗口(水果成篮,找到字符串中所有字母异位词)

🌟快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。 🌟 别再犹豫了!快来订阅我们的算法每日双题精讲专栏,一起踏上算法学习的精彩之旅吧!💪…...

C++ 设计模式:享元模式(Flyweight Pattern)

链接:C 设计模式 链接:C 设计模式 - 单例模式 享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享尽可能多的相同对象来减少内存使用和提高性能。享元模式适用于大量细粒度对象的场景,这些对象之…...

Docker+Portainer 离线安装

1. Docker安装 步骤一:官网下载 docker 安装包 步骤二:解压安装包; tar -zxvf docker-24.0.6.tgz 步骤三:将解压之后的docker文件移到 /usr/bin目录下; cp docker/* /usr/bin/ 步骤四:将docker注册成系统服务; vim /etc/sy…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

macOS 终端智能代理检测

🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...

Java中栈的多种实现类详解

Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...