当前位置: 首页 > news >正文

音视频采集推流时间戳记录方案

音视频同步更多文章

深入理解音视频pts,dts,time_base以及时间数学公式_视频pts计算-CSDN博客

ffplay音视频同步分析_ffplay 音视频同步-CSDN博客

音视频采集打时间戳设计

实时音视频数据的采集和处理场景。具体来说:

采集阶段:

  • 在音视频数据采集过程中,需要为每一帧数据计算出时间戳。
  • 可以采用"起始时间=系统时间"的方式,计算第一帧的时间戳,后续帧按照固定的帧间隔累加得到。
  • 同时引入动态校正机制,检测累计时间戳与系统时间的偏差,及时修正时间戳。

传输阶段:

  • 将计算好的时间戳与音视频数据一起传输到客户端。

播放阶段:

  • 客户端接收到数据后,先将其缓存一段时间。
  • 然后根据附带的时间戳信息,按照正确的时间顺序进行播放。
  • 客户端可以进一步利用时间戳信息来调整缓冲区,以适应网络环境的变化。

这种时间戳设计方案的核心思路就是:

  1. 在采集端尽量保证时间戳的准确性和稳定性。后续讲解如何设计稳定和准确的方案
  2. 将时间戳信息传输到客户端,利用它来进行缓冲和时间校正。
  3. 通过客户端和服务器端的协作,最终实现音视频数据的平滑播放。

        这是实时音视频领域常用的一种时间戳管理策略,能够很好地应对系统负载变化、小数误差累积等问题。

方案推导

第一方案 直接系统时间模式


初始化 starttime = systime
frameTimeStamp = systime - start time
缺陷:涉及到音频硬件采样不稳定,操作系统调度和网络传输的时间,导致ts准确度不够问题且没用纠正机制。


第二种方案 帧间隔模式


初始化 starttime = systime
frameTimeStamp = current systime - start time
Compute TimeStamp = last FrameTimeStamp + duration

优点:能输出frame duration稳定的音视频时间戳。
缺陷:

  • 系统负载过高时,实际帧采集间隔可能与理论设定不一致。这将导致计算出的时间戳与实际情况不符,影响播放效果。
  • 帧间隔涉及到无限小数时,会随时间累积产生较大的误差。例如预计30帧,通常按帧间隔33毫秒处理,但实际是33.3333333毫秒。累积3333帧(约111秒)就出现1秒的误差。


第三种方案  帧间隔+直接系统时间模式


初始化 starttime = systime                                                        //起始时间=系统时间
frameTimeStamp = current systime - start time                       //第一帧时间戳= 系统时间–起始时间
Compute TimeStamp = last FrameTimeStamp + duration       //后续帧TimeStamp=上一帧时间戳+ 帧间隔

 T = current systime  -  starttime     //当前系统时间 – 起始时间 
if( |Compute TimeStamp - T |  >= duraiton/2 )  Compute TimeStamp  = last FrameTimeStamp

//如果当前帧的计算时间戳(CurrentFrameTS)与系统时间差值(T)的绝对值大于等于一个半帧间隔,那么我们就应该将当前帧的时间戳直接设置为系统时间差值T。 


解决:动态纠正,在第二方案基础上,解决了随着播放帧数,时间戳落后或提前现象。落点值 =  T = current systime  -  starttime     //当前系统时间 – 起始时间。关键点是设置一个合理的校正阈值,这里我们使用了半帧间隔。

优点:能够实时纠正时间戳,只要系统正常运转,就能立即恢复正确的时间戳。

缺陷:帧间隔不均匀,能否正常播放依赖于终端解决方案。 比如,假如音频一帧间隔为24毫秒,被采集的回调时间可能为20 毫秒,28毫秒,27毫秒,21毫秒。

终端解决这个问题,可以从以下几个方面着手:

在客户端使用自适应缓冲机制:

  • 根据实际采集帧率的波动情况,动态调整缓冲区大小,尽量平滑播放。

在服务器端进行帧率转换:

  • 服务器可以对不同帧率的数据进行帧率转换,输出稳定的帧率。
  • 这样可以屏蔽掉客户端设备性能的影响。

使用更加先进的时间戳校正算法:

  • 例如利用机器学习等方法,预测并修正时间戳的偏差。

 

采集时间戳同步问题分析

在使用帧间隔+直接系统模式基础上,发送端时间戳记录:

  • 记录每一帧音视频数据的pts时间戳和pts_duration帧间隔
  • 同时记录相邻帧之间的系统时间间隔 sys_duration
  • 这样可以分析在采集阶段,帧间隔的稳定性

分析发送端时间戳:

  • (1) ptsd(pts_duration)波动大,说明采集帧间隔不稳定,可能是由于系统负载波动等因素引起的
    • ​​​​​​​帧间隔 pts_duration 波动很大,那么意味着每帧数据被实际采集的时间间隔是不稳定的。这通常是由于系统负载波动、硬件性能波动等因素引起的,导致采集过程不够稳定。
  • (2) pts稳定,但sysd(sys_duration)波动大,说明在数据发送过程中,速率不够稳定可能是网络传输过程中出现了抖动.
    • ​​​​​​​这里的 pts 时间戳是相对稳定的,意味着数据在采集端生成时间戳是比较准确的。但是,相邻帧之间的系统时间间隔 sys_duration 却出现了波动,说明在数据发送过程中,速率不够稳定。这种情况通常是由于网络传输过程中出现了抖动,导致实际发送速率不够平滑。
  • (3) sysd和ptsd的值应该较为一致,如果两者差异较大,说明在整个采集-传输过程中存在问题
  • ​​​​​​​比如: [send]audio:1-pts:20ms-ptsd:24ms; sysd=23ms

接收端时间戳记录:

  • 接收到的帧信息包含: 帧序号、pts时间戳、pts_duration帧间隔
  • 同样记录了相邻帧的系统时间间隔 sys_duration

分析接收端时间戳:

  • (1) ptsd(pts_duration)波动大,说明采集帧间隔不稳定
  • (2) pts稳定,但sysd(sys_duration)波动大。说明在数据发送过程中,速率不够稳定
  • 比如: [recv] audio:1-pts:20ms-ptsd:24ms; sysd=23ms 200ms

总结核心思路是:

  • 在发送端和接收端同时记录时间戳信息,包括pts时间戳和系统时间
  • 通过对这些时间戳数据的分析,可以全面诊断出音视频同步过程中的各种问题
    • ptsd异常 采集端的帧间隔不稳定
    • pts稳定下 sysd异常 推流端的数据传输速率不稳定,存在网络传输过程中的抖动。

 

 学习资料分享

0voice · GitHub

相关文章:

音视频采集推流时间戳记录方案

音视频同步更多文章 深入理解音视频pts,dts,time_base以及时间数学公式_视频pts计算-CSDN博客 ffplay音视频同步分析_ffplay 音视频同步-CSDN博客 音视频采集打时间戳设计 实时音视频数据的采集和处理场景。具体来说: 采集阶段: 在音视频数据采集过…...

【Linux】:线程安全 + 死锁问题

📃个人主页:island1314 🔥个人专栏:Linux—登神长阶 ⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞 1. 线程安全和重入问题&…...

【深度学习】时间序列表示方法

自然界除了2D的图片数据之外,还有语音、文字,这些数据都有时间的先后顺序的。对于2D的图像的数据,可以用RGB值来表示像素的色彩度。语音可以用信号幅度值来表示,而Pytorch没有自带String支持,在表示文字之前需要进行Em…...

1.微服务灰度发布落地实践(方案设计)

文章目录 前言灰度发布的优点设计概要系统架构图流量控制客户端服务端 路由路径应用客户端实现核心组件分析1.网关2. spring-cloud3. dubbo4. nocas5. thread6. message queue 前言 微服务架构中的灰度发布(也称为金丝雀发布或渐进式发布)是一种在不影响…...

【UE5 C++课程系列笔记】15——Assert的基本使用

目录 概念 一、Check 二、Verify 三、Ensure 对比 基本使用 一、check的基本使用 二、ensure的基本使用 三、verify的基本使用 概念 assert 可在开发期间帮助检测和诊断不正常或无效的运行时条件。这些条件通常检查是否指针为非空、除数为非零、函数并非递归运行&…...

kubernetes Gateway API-1-部署和基础配置

文章目录 1 部署2 最简单的 Gateway3 基于主机名和请求头4 重定向 Redirects4.1 HTTP-to-HTTPS 重定向4.2 路径重定向4.2.1 ReplaceFullPath 替换完整路径4.2.2 ReplacePrefixMatch 替换路径前缀5 重写 Rewrites5.1 重写 主机名5.2 重写 路径5.2.1 重新完整路径5.2.1 重新部分路…...

likeAdmin架构部署(踩坑后的部署流程

1、gitee下载 https://gitee.com/likeadmin/likeadmin_java.git 自己克隆 2、项目注意 Maven:>3.8 ❤️.9 (最好不要3.9已经试过失败 node :node14 (不能是18 已经测试过包打不上去使用14的换源即可 JDK:JDK8 node 需要换源 npm c…...

【一款超好用的开源笔记Logseq本地Docker部署与远程使用指南】

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

浅谈torch.utils.data.TensorDataset和torch.utils.data.DataLoader

1.torch.utils.data.TensorDataset 功能定位 torch.utils.data.TensorDataset 是一个将多个张量(Tensor)数据进行简单包装整合的数据集类,它主要的作用是将相关联的数据(比如特征数据和对应的标签数据等)组合在一起&…...

gesp(C++二级)(16)洛谷:B4037:[GESP202409 二级] 小杨的 N 字矩阵

gesp(C++二级)(16)洛谷:B4037:[GESP202409 二级] 小杨的 N 字矩阵 题目描述 小杨想要构造一个 m m m \times m m...

FFmpeg:详细安装教程与环境配置指南

FFmpeg 部署完整教程 在本篇博客中,我们将详细介绍如何下载并安装 FFmpeg,并将其添加到系统的环境变量中,以便在终端或命令行工具中直接调用。无论你是新手还是有一定基础的用户,这篇教程都能帮助你轻松完成 FFmpeg 的部署。 一、…...

《特征工程:自动化浪潮下的坚守与变革》

在机器学习的广阔天地中,特征工程一直占据着举足轻重的地位。它宛如一位幕后的工匠,精心雕琢着原始数据,将其转化为能够被机器学习模型高效利用的特征,从而推动模型性能迈向新的高度。然而,随着技术的飞速发展&#xf…...

webrtc 源码阅读 make_ref_counted模板函数用法

目录 1. 模板参数解析 1.1 typename T 1.2 typename... Args 1.3 typename std::enable_if::value, T>::type* nullptr 2. scoped_refptr 3. new RefCountedObject(std::forward(args)...); 4. 综合说明 5.在webrtc中的用法 5.1 peerConnectionFactory对象的构建过…...

【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码

【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码 【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征…...

【Docker】离线安装 Docker

离线安装 Docker 在CentOS系统上安装Docker 1、下载 Docker 仓库文件 https://download.docker.com/linux/centos/docker-ce.repo 2、添加 Docker 仓库文件 将上一步下载的文件,移动到 /etc/yum.repos.d/ 目录 3、清除 YUM 缓存 sudo yum clean all sudo yum…...

三大行业案例:AI大模型+Agent实践全景

本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”&a…...

Dockerfile基础指令

1.FROM 基于基准镜像(建议使用官方提供的镜像作为基准镜像,相对安全一些) 举例: 制作基准镜像(基于centos:lastest) FROM cenots 不依赖于任何基准镜像 FROM scratch 依赖于9.0.22版本的tomcat镜像 FROM…...

12.30 linux 文件操作,磁盘分区挂载

ubuntu 在linux 对文件的相关操作【压缩,打包,软链接,文件权限】【head,tail,管道符,通配符,find,grep,cut等】脑图-CSDN博客 1.文件操作 在家目录下创建目录文件&#…...

[图形渲染]【Unity Shader】【游戏开发】 Shader数学基础17-法线变换基础与应用

在计算机图形学中,法线(normal) 是表示表面方向的向量。它在光照、阴影、碰撞检测等领域有着重要作用。本文将介绍如何在模型变换过程中正确变换法线,确保其在光照计算中的正确性,特别是法线与顶点的变换问题。 1. 法线与切线的基本概念 法线(Normal Vector) 法线(或…...

YOLOv9-0.1部分代码阅读笔记-train.py

train.py train.py 目录 train.py 1.所需的库和模块 2.def train(hyp, opt, device, callbacks): 3.def parse_opt(knownFalse): 4.def main(opt, callbacksCallbacks()): 5.def run(**kwargs): 6.if __name__ "__main__": 1.所需的库和模块 import …...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率&#xff0c…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...

【PX4飞控】mavros gps相关话题分析,经纬度海拔获取方法,卫星数锁定状态获取方法

使用 ROS1-Noetic 和 mavros v1.20.1, 携带经纬度海拔的话题主要有三个: /mavros/global_position/raw/fix/mavros/gpsstatus/gps1/raw/mavros/global_position/global 查看 mavros 源码,来分析他们的发布过程。发现前两个话题都对应了同一…...

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…...

用 FFmpeg 实现 RTMP 推流直播

RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...