洪水灾害多智能体分布式模拟示例代码
1. 环境定义:支持灾害动态、地理数据和分布式架构
import numpy as np
import random
import matplotlib.pyplot as plt# 新疆主要城市及邻接关系
XINJIANG_CITIES = {'Urumqi': ['Changji', 'Shihezi'],'Changji': ['Urumqi', 'Shihezi', 'Turpan'],'Shihezi': ['Urumqi', 'Changji', 'Karamay'],'Karamay': ['Shihezi'],'Turpan': ['Changji']
}CITY_COORDINATES = {'Urumqi': (43.8256, 87.6168),'Changji': (44.0169, 87.3082),'Shihezi': (44.3024, 86.0369),'Karamay': (45.5798, 84.8892),'Turpan': (42.9513, 89.1895)
}class XinjiangFloodEnvironment:def __init__(self, cities, max_steps=50, disaster_spread_prob=0.3):"""新疆多城市洪水灾害环境。参数:- cities: 城市及邻接关系字典。- max_steps: 每回合最大步数。- disaster_spread_prob: 灾害扩散概率。"""self.cities = citiesself.city_list = list(cities.keys())self.num_cities = len(self.city_list)self.max_steps = max_stepsself.disaster_spread_prob = disaster_spread_probself.reset()def reset(self):""" 重置环境,初始化灾害和资源分布。 """self.steps = 0self.disaster_status = {city: 0 for city in self.city_list} # 灾害状态:0为无灾,1为灾害中self.resource_status = {city: 5 for city in self.city_list} # 每城市初始资源disaster_city = random.choice(self.city_list)self.disaster_status[disaster_city] = 1 # 随机选择灾害城市return self._get_state()def _get_state(self):""" 获取当前状态,包含灾害和资源信息。 """return {'disaster_status': self.disaster_status,'resource_status': self.resource_status}def _spread_disaster(self):""" 模拟灾害扩散。 """new_disaster_status = self.disaster_status.copy()for city, status in self.disaster_status.items():if status == 1: # 当前城市有灾害for neighbor in self.cities[city]:if random.random() < self.disaster_spread_prob:new_disaster_status[neighbor] = 1self.disaster_status = new_disaster_statusdef step(self, actions):"""执行动作。参数:- actions: 每个城市的动作字典 {city: allocated_resources}。返回:- 下一状态- 总奖励- 是否结束"""total_reward = 0for city, allocated_resources in actions.items():if self.disaster_status[city] == 1: # 如果该城市有灾害if allocated_resources > 0:self.resource_status[city] -= allocated_resourcesif self.resource_status[city] < 0: # 资源不能为负allocated_resources += self.resource_status[city]self.resource_status[city] = 0self.disaster_status[city] = 0 # 灾害解决total_reward += 10 # 成功解决灾害else:total_reward -= 5 # 未响应灾害的惩罚self.steps += 1if self.steps >= self.max_steps or sum(self.disaster_status.values()) == 0:return self._get_state(), total_reward, True # 所有灾害解决或步数结束# 更新灾害状态(灾害扩散)self._spread_disaster()return self._get_state(), total_reward, False # 继续运行def render(self):""" 可视化当前环境状态。 """disaster_cities = [city for city, status in self.disaster_status.items() if status == 1]print(f"Step {self.steps}:")print(f"Disaster Cities: {disaster_cities}")print(f"Resource Status: {self.resource_status}")plt.figure(figsize=(8, 8))for city, (lat, lon) in CITY_COORDINATES.items():plt.scatter(lon, lat, color='blue' if city in self.resource_status else 'red', s=100)plt.text(lon, lat, city, fontsize=10)plt.xlabel("Longitude")plt.ylabel("Latitude")plt.title("Xinjiang Flood Simulation")plt.show()
2. 分布式多智能体实现
class DistributedAgent:def __init__(self, city, action_size):"""分布式智能体。参数:- city: 智能体负责的城市。- action_size: 动作空间大小。"""self.city = cityself.action_size = action_sizeself.epsilon = 1.0 # 探索概率self.epsilon_decay = 0.995self.epsilon_min = 0.01def act(self, state, available_resources):""" 基于当前状态和资源选择动作。 """if np.random.rand() <= self.epsilon:return random.randint(0, available_resources) # 随机分配资源return available_resources # 简化决策:全分配def update_epsilon(self):""" 衰减探索概率。 """if self.epsilon > self.epsilon_min:self.epsilon *= self.epsilon_decay
3. 动态奖励函数
def calculate_reward(disaster_map, response_time, resources_used, weights):"""计算动态奖励。参数:- disaster_map: 当前灾害状态。- response_time: 当前响应时间。- resources_used: 当前使用的资源量。- weights: 奖励函数的权重 (dict)。返回:- reward: 总奖励值。"""covered_disasters = disaster_map.sum() # 未解决的灾害数量return (weights['covered'] * (1 - covered_disasters) -weights['time'] * response_time -weights['resources'] * resources_used)
4. 主训练循环
if __name__ == "__main__":env = XinjiangFloodEnvironment(XINJIANG_CITIES) # 初始化环境agents = {city: DistributedAgent(city, 5) for city in XINJIANG_CITIES.keys()} # 每城市一个智能体episodes = 100 # 训练轮次for e in range(episodes):state = env.reset() # 重置环境total_reward = 0while True:actions = {}for city, agent in agents.items():available_resources = state['resource_status'][city]actions[city] = agent.act(state, available_resources) # 每个智能体选择动作next_state, reward, done = env.step(actions) # 执行动作total_reward += rewardif done:print(f"Episode {e+1}/{episodes}, Total Reward: {total_reward}")env.render()breakstate = next_state# 更新每个智能体的探索概率for agent in agents.values():agent.update_epsilon()
功能扩展与总结
-
灾害动态扩展:
- 灾害通过邻接城市扩散。
- 动态更新灾害状态,提升模拟真实性。
-
多智能体分布式协作:
- 每个智能体管理自己城市的资源。
- 集中式奖励计算与全局决策评估。
-
动态奖励函数:
- 同时优化响应时间、资源成本和覆盖范围。
-
新疆地理数据支持:
- 模拟新疆主要城市及其邻接关系。
- 地理坐标可视化,帮助分析决策动态。
相关文章:
洪水灾害多智能体分布式模拟示例代码
1. 环境定义:支持灾害动态、地理数据和分布式架构 import numpy as np import random import matplotlib.pyplot as plt# 新疆主要城市及邻接关系 XINJIANG_CITIES {Urumqi: [Changji, Shihezi],Changji: [Urumqi, Shihezi, Turpan],Shihezi: [Urumqi, Changji, K…...
【前端】Node.js使用教程
目录 一、?Node.js开发环境和编译 1.1 安装Node.js 1.2 创建一个Node.js项目 1.3 编写Node.js程序 1.4 运行Node.js程序 1.5 使用Node.js模块 二、高级的Node.js编程概念和示例 2.1 异步编程 2.2 错误处理 2.3 网络请求 2.4 构建Web服务器 2.5 数据库交互 三、No…...
django33全栈班2025年004 录入数据
前言 通过前面的学习, 我们已经算是Python基本入门了. 如果你能熟练的掌握的话, 至少让你换台电脑, 在新电脑上搭建Python的开发环境肯定是没问题的. 我们呢也学习了第一行Python代码, 但是我们不知道这行代码是什么意思, 为什么能够运行, 怎么就能输出到控制台呢? 还有, …...
小白投资理财 - 看懂 EPS 每股收益
小白投资理财 - 看懂 EPS 每股收益 什么是 EPSEPS 缺陷EPS 优点EPS 跟自己比EPS 跟别人比 总结 投资一家公司就要选择会赚钱的公司,我们最为关心的莫过于公司的盈利能力,只有会下蛋的鸡才是好鸡,买股票为的就是获得利润。想成为一位成功的投资…...
Pandas-apply自定义函数
文章目录 一. Series的apply方法1. 一个元素一个元素的传入2. apply传入一个参数函数2.apply传入多个参数函数 二. DataFrame的apply方法1. axis参数指定按行/ 按列(默认)传入数据2. apply使用 三. apply 使用案例1. 栗子12. 栗子2-列3. 栗子3-行 四. 向量化函数1. 使用np.vect…...
github 项目分享
今天和大家分享一些github上面搜到关于卫星遥感和水环境相关的项目。 一、WaterDetect 使用端到端算法去识别水体范围的算法,针对哨兵2卫星遥感数据可用。 项目地址: https://github.com/cordmaur/WaterDetect 二、DeepWaterMap 深度卷积神经网络去…...
与你共度的烟火日常
见过不少人、经过不少事、也吃过不少苦,感悟世事无常、人心多变,靠着回忆将往事串珠成链,聊聊感情、谈谈发展,我慢慢写、你一点一点看...... 我和她一起收拾完屋子,忙完已经中午了。她说:“咱们去趟超市吧&…...
基于Python的社交音乐分享平台
作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...
Kafka的acks机制和ISR列表
Kafka 是一个流行的分布式流处理平台,用于构建实时数据流管道和应用程序。在 Kafka 中,acks 机制和 ISR(In-Sync Replicas)列表是两个重要的概念,它们共同确保消息的持久性和可靠性。 acks 机制 acks 机制是 Kafka 生…...
FreeRTOS: ISR(中断服务例程)和 TCB(任务控制块)
在讨论 ISR(中断服务例程)和 TCB(任务控制块,Task Control Block)时,我们实际上是在探讨 FreeRTOS 中两个不同但又相互关联的概念:一个是用于处理硬件或软件触发的中断事件,另一个是…...
【Spring】Spring DI(依赖注入)详解—自动装配—byType实现原理
一、引言 依赖注入(Dependency Injection, DI)是Spring框架的核心特性之一,它通过控制反转(Inversion of Control, IoC)来管理对象的生命周期和依赖关系。在实际应用中,DI不仅提高了代码的可维护性和可测试…...
015-spring-动态原理、AOP的xml和注解方式
强制使用cglib动态代理 spring-AOP的使用...
linux更换yum源
1.备份系统源文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak2.下载国内的yum源到/etc/yum.repos.d/CentOS-Base.repo wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo如无法使用wget命令也可以…...
跨年战揭开本地生活新赛季:美团、抖音和快手争夺冰雪经济
元旦将至,冬季文旅消费渐至高潮。 2024年的文旅消费市场延续了去年冰雪游的热度,不断创下年内话题和热度新高。美团旅行数据显示,12月以来,雪场夜滑搜索热度同比增长65%,TOP5搜索城市分别是北京、乌鲁木齐、张家口、吉…...
文件传输工具FTransferor<优化篇>
在上一篇文章中,我们详细探讨了FTransferor文件传输工具的设计与实现,并展示了它在局域网文件传输方面的高效性。然而,随着互联网应用场景的不断丰富,传统的基于 TCP/UDP 的传输方式已经无法满足部分开发者的需求。特别是在跨平台…...
【最新】17个一站式数据集成平台案例PPT下载(Apache SeaTunnel )
17个Apache SeaTunnel案例下载见附件! 开发篇 1.Apache SeaTunnel——OLAP 引擎的数据动脉 1.1项目定位——EtLT 时代的新一代数据集成平台 1.2Apache SeaTunnel 核心功能 1.3Apache SeaTunnel 在 OLAP 场景下的应用 1.4WhaleTunnel 产品特性 2.教你从头到尾开发一…...
【每日学点鸿蒙知识】子窗口方向、RichEdit不居中、本地资源缓存给web、Json转对象丢失方法、监听状态变量数组中内容改变
1、HarmonyOS 应用新建子窗口设置显示方向未生效? 子窗口getPreferredOrientation获取到的是横向 设置没问题,但是ui显示还是纵向的 直接设置主窗口的方向即可。参考demo: import window from ohos.window;Entry Component struct Index {…...
【AI绘画】Midjourney前置指令/imagine与单图指令详解
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 💯Midjourney前置指令/imagine什么是前置指令?/imaginepromptUpscale(图像分离)Variations(变化)🔄&a…...
【鸿蒙NEXT】鸿蒙里面类似iOS的Keychain——关键资产(@ohos.security.asset)实现设备唯一标识
前言 在iOS开发中Keychain 是一个非常安全的存储系统,用于保存敏感信息,如密码、证书、密钥等。与 NSUserDefaults 或文件系统不同,Keychain 提供了更高的安全性,因为它对数据进行了加密,并且只有经过授权的应用程序才…...
学习笔记 --C#基础其他知识点(数据结构)
C#中的数据结构《二》–视频学习笔记 在数据结构的分类: 1.集合 2.线性 3.树形 4.图状结构 数据结构是数据在程序中的存储结构,和基本的数据操作 算法:解决问题的解决思路,基于数据结构 本课程包括:线性表ÿ…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
