位置编码-APE
Transformer 中的绝对位置编码
(以下由gpt 生成)
Transformer 的绝对位置编码(Absolute Position Encoding, APE)是用于对序列数据中的位置信息进行建模的一种方法。在 Transformer 的架构中,输入数据(如句子中的单词或字符)通过词嵌入层转化为连续的向量表示。这些向量本身并不包含任何位置信息,而 Transformer 是一种无序模型(对输入的顺序敏感性取决于位置信息的建模方式)。因此,需要加入位置信息使模型能够感知输入序列中每个元素的位置。
绝对位置编码通过为每个序列位置生成固定的编码向量,将这些向量添加到输入的词嵌入中,从而将位置信息显式地融入模型。
- 绝对位置编码的公式
解释:
正弦和余弦函数的使用使得不同位置的编码之间具有周期性。
1/10000^(2i/d)控制了不同维度的频率,使得高维特征的变化比低维特征更快。
2. 绝对位置编码的性质
固定性:绝对位置编码是固定的,不需要通过训练学习。这减少了模型的参数量。
平滑性:相邻位置的编码向量之间具有平滑的变化,便于模型捕捉到序列中的局部连续性。
维度分布:不同维度的频率不同,能够捕捉到不同尺度的位置信息
3. 绝对位置编码的使用
在 Transformer 中,绝对位置编码通常与词嵌入相加后输入到模型中:
# 假设 word_embeddings 是嵌入向量 (seq_len, d_model)
word_embeddings = torch.randn(seq_len, d_model)
input_with_pos = word_embeddings + pos_encoding # 加入位置编码
这种加法操作将词嵌入与位置编码结合在一起,使得模型既能够感知词语的语义信息,也能感知其在序列中的位置信息。
4. 实现代码
import torch
import mathdef generate_position_encoding(seq_len, d_model):"""生成绝对位置编码的函数。:param seq_len: 序列的长度:param d_model: 嵌入向量的维度:return: 位置编码矩阵 (seq_len, d_model)"""# 初始化位置编码矩阵position_encoding = torch.zeros(seq_len, d_model)# 生成位置索引和维度索引position = torch.arange(0, seq_len).unsqueeze(1) # (seq_len, 1)div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) # (d_model // 2,)# 应用正弦和余弦函数position_encoding[:, 0::2] = torch.sin(position * div_term) # 偶数维度position_encoding[:, 1::2] = torch.cos(position * div_term) # 奇数维度return position_encoding# 示例
seq_len = 32 #10 # 序列长度
d_model = 128 #16 # 嵌入维度
pos_encoding = generate_position_encoding(seq_len, d_model)
print(pos_encoding)# 可视化位置编码
import matplotlib.pyplot as plt
import seaborn as snsplt.figure(figsize=(10, 6))
ax = sns.heatmap(pos_encoding.numpy(), cmap='coolwarm', annot=False, cbar=True)# 将横轴放置在顶部
ax.xaxis.set_ticks_position('top') # 将x轴移至顶部
plt.title('Absolute Position Encoding')
plt.xlabel('Embedding Dimension')
plt.ylabel('Position in Sequence')# 调整布局以避免标签重叠
plt.subplots_adjust(top=0.85)
plt.show()print()
5. 绝对位置编码的优缺点
优点:
无参数化:绝对位置编码是固定的,不会增加模型的参数。
周期性和可扩展性:正弦和余弦函数的周期性使得编码具有平滑的性质,且理论上可以扩展到更长的序列。
简单易用:只需将固定的编码添加到词嵌入中即可。
缺点:
不灵活:固定的位置编码对任务或数据不具备适应性,可能限制模型的表现。
长序列表示问题:对于非常长的序列,编码的分辨率可能不足(由于正弦和余弦函数的周期性)。
相对位置信息不足:绝对位置编码只关注位置本身,无法直接捕捉相对位置关系
相关文章:

位置编码-APE
Transformer 中的绝对位置编码 (以下由gpt 生成) Transformer 的绝对位置编码(Absolute Position Encoding, APE)是用于对序列数据中的位置信息进行建模的一种方法。在 Transformer 的架构中,输入数据(如句…...
MySQL有哪些锁?
1.MySQL有哪些锁? 全局锁表级锁 表锁元数据锁意向锁 行级锁 记录锁间隙锁临键锁临时意向锁 我了解的是MySQL的锁可以分为全局锁、表级锁、行级锁。 我比较熟悉的是表级锁和行级锁,如果我们对表结构进行修改时,MySQL就会对这个表结构加一个…...

Everything实现,快速搜索文件
最近编写NTFS文件实时搜索工具, 类似 Everything 这样, 翻阅了很多博客, 结果大致如下: 1.分析比较肤浅, 采用USN日志枚举来获取文件记录 速度一言难尽, 因为日志枚举的是全盘所有文件的所有日志, 记录比文件记录还多, 速度当然很慢, 还有的甚至于是 使用 DeviceIoControl 函数…...

[硬件] DELL BIOS 相关注意事项
前言 前段时间重装系统. DELL BIOS属实资料少, 又难用. 这里给出相关的注意事项, 并且配上图片. BIOS相关注意事项 进入BIOS ESC/F2/ F12. 都可以进入BIOS, 当进U盘的入Win PE系统时, 使用F12 效果更佳. 关闭安全模式 切换到Boot Configuration选项,将Secure Boot选项off选…...

Rocky Linux 下安装Liboffice
Rocky Linux下安装Liboffice。 Step1: 在桌面,单击击键盘的Window键,点击出现的白色software按钮图标; Step2: 输入lib,即可自动跳出libre Office, 进行安装; Step3: Have fun with Rocky Linux....
【每日学点鸿蒙知识】长时任务、HarmonyAppProvision申请、preferences、Testing工具、应用保活
1、HarmonyOS 如何解决语音聊天、通信app退后台系统采集播放回调就会停止,回前台未恢复? 关于应用切到后台系统采集播放回调停止的问题原因如下:为了降低设备耗电速度、保障用户使用流畅度,系统会对退至后台的应用进行管控&#…...

步进电机驱动算法——S形加减速算法原理
1. 前言: 最近项目又用到了步进电机,为了在运动中加减速更加平稳决定研究一下S型加减速,原来用过野火的s型加减速程序,云里雾里的移植成功了,今天再翻来程序看一脸懵逼,重新学习了一下发现所有公式都能看懂…...
【图像去噪】论文复现:大道至简!ZS-N2N的Pytorch源码复现,跑通源码,获得指标计算结果,补充保存去噪结果图像代码,代码实现与论文理论对应!
请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中) 完整代码和训练好的模型权重文件下载链接见本文底…...

2024年中国新能源汽车用车发展怎么样 PaperGPT(一)
概述 在国家政策的强力扶持下,2024年中国新能源汽车市场迎来了新的发展机遇。本文将基于《中国新能源汽车用车报告(2024年)》的数据,对新能源汽车的市场发展和用车趋势概述。 新能源汽车市场发展 政策推动:国家和地…...
数据结构-排序思想
直接插入排序 将后面的无序区中的元素挨个向前面的有序区中插入。 1.将顺序表中R[0]用作哨兵,按索引i2...n的次序,将R[i]向有序区R[1...i-1]中执行插入操作。 2.插入操作可采取在有序区中从后向前的查找比较和移动的方法。 3.此操作中比较的次数与原序列…...
python 快速排序(Quick Sort)
快速排序(Quick Sort) 快速排序是一种高效的排序算法,采用分治法(Divide and Conquer)策略。它的基本思想是:选择一个基准元素(pivot),将数组分为两部分,使得…...

MySQL数据库——常见慢查询优化方式
本文详细介绍MySQL的慢查询相关概念,分析步骤及其优化方案等。 文章目录 什么是慢查询日志?慢查询日志的相关参数如何启用慢查询日志?方式一:修改配置文件方式二:通过命令动态启用 分析慢查询日志方式一:直…...

【AIGC篇】AIGC 引擎:点燃创作自动化的未来之火
:羑悻的小杀马特.-CSDN博客 未来都是惊喜。你生来本应为高山。并非草芥。 引言: 在当今数字化的时代,人工智能生成内容(AIGC)正以一种前所未有的力量改变着我们的创作领域。它就像一个神秘而强大的魔法师,…...

C语言性能优化:从基础到高级的全面指南
引言 C 语言以其高效、灵活和功能强大而著称,被广泛应用于系统编程、嵌入式开发、游戏开发等领域。然而,要写出高性能的 C 语言代码,需要对 C 语言的特性和底层硬件有深入的了解。本文将详细介绍 C 语言性能优化的背后技术,并通过…...
常用的公共 NTP(网络时间协议)服务器
公共 NTP 服务列表 以下是一些常用的公共 NTP(网络时间协议)服务器,供您参考: 中国地区公共 NTP 服务器 国家授时中心 NTP 服务器:ntp.ntsc.ac.cn中国 NTP 快速授时服务:cn.ntp.org.cn阿里云公共 NTP 服务…...

Kafka中的Topic和Partition有什么关系?
大家好,我是锋哥。今天分享关于【Kafka中的Topic和Partition有什么关系?】面试题。希望对大家有帮助; Kafka中的Topic和Partition有什么关系? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Apache Kafka 中&#…...

Unity 使用UGUI制作卷轴开启关闭效果
视频效果 代码 using UnityEngine.UI; using System.Collections; using System.Collections.Generic; using UnityEngine; using DG.Tweening; using DG.Tweening.Core; using DG.Tweening.Plugins.Options;public class JuanZhou : MonoBehaviour {[SerializeField]private …...

MarkDown怎么转pdf;Mark Text怎么使用;
MarkDown怎么转pdf 目录 MarkDown怎么转pdf先用CSDN进行编辑,能双向看版式;标题最后直接导出pdfMark Text怎么使用一、界面介绍二、基本操作三、视图模式四、其他功能先用CSDN进行编辑,能双向看版式; 标题最后直接导出pdf Mark Text怎么使用 Mark Text是一款简洁的开源Mar…...

整合版canal ha搭建--基于1.1.4版本
开启MySql Binlog(1)修改MySql配置文件(2)重启MySql服务,查看配置是否生效(3)配置起效果后,创建canal用户,并赋予权限安装canal-admin(1)解压 canal.admin-1…...

QGIS移动图元功能
有时需要在QGIS里面移动一些矢量图层,比如图层的地理配准,网上搜了一些资料没有查看,后来仔细找了下,在编辑-编辑几何图形-移动要素里面,可以移动图层。 注意:移动前先要选择上要移动的图层,之…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...