本地快速推断的语言模型比较:Apple MLX、Llama.cpp与Hugging Face Candle Rust
本地快速推断的语言模型比较:Apple MLX、Llama.cpp与Hugging Face Candle Rust
在自然语言处理(NLP)部署中,推断速度是一个关键因素,尤其是对于支持大型语言模型(LLM)的应用来说。随着Apple M1芯片等新移动架构的兴起,评估LLMs在这些平台上的性能显得尤为重要。本文将对三种流行的LLM库——Apple MLX、Llama.cpp和Hugging Face的Candle Rust进行比较,重点关注它们在Apple M1芯片上的推断和生成速度。
主要库
1. Apple MLX
MLX是为Apple硅优化的机器学习框架,旨在既用户友好,又高效地训练和部署模型。用户可以通过Python的包管理工具pip轻松安装MLX:
pip install mlx
生成文本可以通过安装mlx-lm
包来实现:
pip install mlx-lm
之后,可以使用以下代码来加载模型并生成文本:
from mlx_lm import load, generatemodel, tokenizer = load("mistralai/Mistral-7B-v0.1")
response = generate(model, tokenizer, prompt="hello", verbose=True)
GGUF支持
MLX支持GGUF格式,该格式为快速加载和保存模型而设计。用户可通过安装依赖库并利用Python脚本运行模型实现生成任务。
2. Llama.cpp
Llama.cpp库的主要目标是通过4位整数量化在MacBook上运行LLaMA模型。用户可以通过以下步骤开始使用:
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
3. Hugging Face Candle Rust
Candle是一个轻量级的机器学习框架,专为Rust设计,关注性能和易用性。用户需要首先安装Cargo:
curl https://sh.rustup.rs -sSf | sh
然后,可以通过git克隆Candle库:
git clone https://github.com/huggingface/candle.git
实验模型
在本实验中,选择了两种先进的LLM模型:Mistral-7B和Phi-2,分别进行对比测试。
Mistral-7B
- Q4 GGUF: 使用GGUF格式以加快推断过程。
- 4-bit: 权重表示采用4位,从而减少内存占用。
Phi-2
- Q4 GGUF: 与Mistral-7B采用相似的结构,提供有效的量化训练。
- 4-bit: 同样采用4位权重,优化存储需求。
性能评估
在实验过程中,我们测量了各种库在不同任务中的生成速度。整体实验配置使用了搭载M1芯片的Apple MacBook,配备16GB统一内存。
结果分析
对于Mistral-7B的Q4 GGUF配置,实验表明Llama.cpp在生成速度上优于其他库:
- Llama.cpp: 11 tokens/秒
- Candle Rust: 7–8 tokens/秒
- MLX: 3–4 tokens/秒
对于Phi-2的实验结果:
-
Coding Tasks:
- Llama.cpp: 25 tokens/秒
- MLX (4-bit): 43 tokens/秒
- Candle Rust: 8.6 tokens/秒
-
Non-coding Tasks:
- Llama.cpp: 28 tokens/秒
- MLX (4-bit): 85 tokens/秒
- Candle Rust: 14 tokens/秒
实验结果总结
通过多次测试发现,Phi-2在编码任务的生成速度低于非编码任务,而Mistral或Llama模型则在所有任务中的生成速度保持相对一致。对于需要在Apple M1芯片上运行的低精度LLM,实现Q4 GGUF布局的支持仍需提升。
结论
从实验结果来看,Llama.cpp在Mistral-7B和Phi-2模型的处理上具备优势。而MLX的最新性能提升则表明,在适当的配置和优化后,它也能够在特定任务中表现出色。随着对GGUF模型的支持不断增强,MLX的潜力可能进一步得到释放。
相关文章:
本地快速推断的语言模型比较:Apple MLX、Llama.cpp与Hugging Face Candle Rust
本地快速推断的语言模型比较:Apple MLX、Llama.cpp与Hugging Face Candle Rust 在自然语言处理(NLP)部署中,推断速度是一个关键因素,尤其是对于支持大型语言模型(LLM)的应用来说。随着Apple M1…...

您的公司需要小型语言模型
当专用模型超越通用模型时 “越大越好”——这个原则在人工智能领域根深蒂固。每个月都有更大的模型诞生,参数越来越多。各家公司甚至为此建设价值100亿美元的AI数据中心。但这是唯一的方向吗? 在NeurIPS 2024大会上,OpenAI联合创始人伊利亚…...
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之14 方案再探 之5:知识树三类节点对应的三种网络形式及其网络主机
本文要点 前面讨论过(前面有错这里做了修正),三种簿册归档 对应通过不同的网络形式(分布式、对等式和去中心式)。每种网络主机上分别提供: 分布式控制脚本、 对等式账本 和 备记手本 通过以上讨论&#x…...
JR-RLAA系20路模拟音频多功能编码器
JR-RLAA系20路模拟音频多功能编码器 产品特色 (1)工业级19英寸标准设备,内置双电源 (2)内嵌Web Server,支持远程Web页面登陆后的统一配置操作 (3)支持20路音频输入 (4)支持Dolby Digital(AC-3) ,MPEG-2,AAC-LC/HE-AAC&#x…...

LabVIEW冷却风机性能测试系统
开发了基于LabVIEW软件及LabSQL工具包的冷却风机性能测试系统。系统通过高效的数据库访问技术,实现了对冷却风机测试过程中关键性能数据的采集、存储与管理,优化了测试流程并提升了数据处理的效率。 项目背景 在工业生产和科研测试中,准…...
Python-Pdf转Markdown
使用pdfminer.sixmarkdownify pdfminer.six可以提取Pdf文本内容markdownify可以将文本内容写markdown文件 安装 pip install pdfminer.six pip install markdownify实现 from pdfminer.high_level import extract_text from markdownify import markdownifydef pdf2markdo…...

pyQT + OpenCV相关练习
一、设计思路 1、思路分析与设计 本段代码是一个使用 PyQt6 和 OpenCV 创建的图像处理应用程序。其主要功能是通过一个图形界面让用户对图片进行基本的图像处理操作,如灰度化、翻转、旋转、亮度与对比度调整,以及一些滤镜效果(模糊、锐化、边…...

音视频入门基础:MPEG2-PS专题(3)——MPEG2-PS格式简介
一、引言 本文对MPEG2-PS格式进行简介。 进行简介之前,请各位先下载MPEG2-PS的官方文档。ITU-T和ISO/IEC都分别提供MPEG2-PS的官方文档。但是ITU提供的文档是免费的,ISO/IEC是付费的,所以我们主要阅读ITU提供的官方文档,比如较新…...

云计算学习架构篇之HTTP协议、Nginx常用模块与Nginx服务实战
一.HTTP协议讲解 1.1rsync服务重构 bash 部署服务端: 1.安装服务 [rootbackup ~]# yum -y install rsync 2.配置服务 [rootbackup ~]# vim /etc/rsyncd.conf uid rsync gid rsync port 873 fake super yes use chroot no max connections 200 timeout 600 ignore erro…...
Zookeeper模式安装Kafka(含常规、容器两种安装方式)
一、#创作灵感# 公司使用Kafka的软件项目较多,故写技术笔记巩固知识要点 二、软件环境 - Kafka 3.9.0 官方下载地址:Kafka 3.9.0 - ZooKeeper 3.9.3 官方下载地址:ZooKeeper 3.9.3 - Docker Desktop 4.37 容器图形化工具 官方下载地址…...

【游戏设计原理】41 - 游戏的核心
1. 如何理解? 这条原理主要在讲述“游戏核心”这一概念的重要性及其在游戏开发中的作用。游戏的核心是指决定游戏整体玩法和体验的核心元素,它通常是游戏的主要机制、目标或动作方式。理解这一原理时,我们可以从以下几个层面来考虑ÿ…...

机器学习算法基础知识1:决策树
机器学习算法基础知识1:决策树 一、本文内容与前置知识点1. 本文内容2. 前置知识点 二、场景描述三、决策树的训练1. 决策树训练方式(1)分类原则-Gini(2)分类原则-entropy(3)加权系数-样本量&am…...

[Qt] 信号和槽(1) | 本质 | 使用 | 自定义
目录 一、信号和槽概述 二、本质 底层实现 1. 函数间的相互调用 2. 类成员中的特殊角色 三、使用 四. 自定义信号和槽 1. 基本语法 (1) 自定义信号函数书写规范 (2) 自定义槽函数书写规范 (3) 发送信号 (4) 示例 A. 示例一 B. 示例二 —— 老师说“上课了”&…...
33. 简易内存池
1、题目描述 ● 请实现一个简易内存池,根据请求命令完成内存分配和释放。 ● 内存池支持两种操作命令,REQUEST和RELEASE,其格式为: ● REQUEST请求的内存大小 表示请求分配指定大小内存,如果分配成功,返回分配到的内存…...

win32汇编环境,对话框程序模版,含文本框与菜单简单功能
;运行效果 ;win32汇编环境,对话框程序模版,含文本框与菜单简单功能 ;直接抄进RadAsm可编译运行。 ;下面为asm文件 ;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>&g…...

人工智能与传统编程的主要区别是什么?
传统编程:开发者预先编写软件行为规则,代码基于程序员定义逻辑处理输入并产生确定输出,具有确定性、手动编写规则和结构化逻辑特点,如垃圾邮件分类程序基于预设关键词等规则。AI 编程:从数据中学习而非手动编写规则&am…...
实战交易策略 篇十一:一揽子交易策略
文章目录 系列文章适用条件核心策略小额大量投资行业或主题聚焦同步操作优势系列文章 实战交易策略 篇一:奥利弗瓦莱士短线交易策略 实战交易策略 篇二:杰西利弗莫尔股票大作手操盘术策略 实战交易策略 篇三:333交易策略 实战交易策略 篇四:价值投资交易策略 实战交易策略…...

doris 2.1 -Data Manipulation-Transaction
注意:doris 只能控制读一致性,并不能rollback 1 Explicit and Implicit Transactions 1.1 Explicit Transactions 1.1.1 Explicit transactions require users to actively start, commit transactions. Only insert into values statement is supported in 2.1. BEGIN; …...

多模态融合:阿尔茨海默病检测
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 一、实验介绍 本实验包含 645 名阿尔茨海默病受试者,分为 AD、CN 和 MCI 组,数据集包含 3D MRI 图像与一份CSV数据,MRI数据…...

Ceph 手动部署(CentOS9)
#Ceph手动部署、CentOS9、squid版本、数字版本19.2.0 #部署服务:块、对象、文件 一、部署前规划 1、兼容性确认 2、资源规划 节点类型节点名称操作系统CPU/内存硬盘网络组件安装集群节点CephAdm01CentOS94U/8GOS:40G,OSD:2*100GIP1:192.169.0.9(管理&集群),IP2:…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...