深度学习——损失函数汇总
1. 连续值损失函数
总结:主要使用胡贝儿损失函数,应用于连续数值的预测之间的误差损失,参考地址
import torch
import torch.nn as nna = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
b = torch.tensor([[3, 5], [8, 6]], dtype=torch.float)loss_fn1 = torch.nn.MSELoss(reduction='none')
loss1 = loss_fn1(a, b) # loss1 是按照原始维度输出,即对应位置的元素相减然后求平方
print(loss1) # 输出结果:tensor([[4., 9.], [25., 4.]])loss_fn2 = torch.nn.MSELoss(reduction='sum')
loss2 = loss_fn2(a, b) # loss2 是所有位置的损失求和
print(loss2) # 输出结果:tensor(42.)loss_fn3 = torch.nn.MSELoss(reduction='mean')
loss3 = loss_fn3(a, b) # loss3 是所有位置的损失求和后取平均
print(loss3) # 输出结果:tensor(10.5000)
2. 二分类损失函数
损失函数 | 特点 |
MarginRankingLoss | 两个输入变量之间排名,主要用于信息检索中的相关排序; |
BCELoss | 衡量预测结果与输入标签之间差异,常用于图像检测和文本分类等; |
SoftMarginLoss | 预测结果与输入结果之间log损失,适用于非线性可分数据的分类问题; |
CosineEmbeddingLoss | <
相关文章:

深度学习——损失函数汇总
1. 连续值损失函数 总结:主要使用胡贝儿损失函数,应用于连续数值的预测之间的误差损失,参考地址 import torch import torch.nn as nna = torch.tensor([[1, 2], [3, 4]], dtype=torch.float) b = torch.tensor([[3, 5], [8, 6]], dtype=torch.float)loss_fn1 = torch.nn.M…...

1、单片机寄存器-io输入实验笔记
1、硬件 时钟总线如下: PB端口挂载在AHB1总线上,因此要对该位进行使能。 引脚 LED0和LED1挂载在PB0和PB1上:推挽输出、100M、 上拉默认高电平,低电平点亮。 2、软件 位带操作 #ifndef _IO_BIT_H_ #define _IO_BIT_H_#define …...

记忆旅游系统|Java|SSM|VUE| 前后端分离
【技术栈】 1⃣️:架构: B/S、MVC 2⃣️:系统环境:Windowsh/Mac 3⃣️:开发环境:IDEA、JDK1.8、Maven、Mysql5.7 4⃣️:技术栈:Java、Mysql、SSM、Mybatis-Plus、VUE、jquery,html 5⃣️数据库可…...
CentOS7下的 OpenSSH 服务器和客户端
目录 1. 在 IP 地址为 192.168.98.11 的 Linux 主机上安装 OpenSSH 服务器; 2. 激活 OpenSSH 服务,并设置开机启动; 3. 在 IP 地址为 192.168.98.22 的 Linux 主机上安装 OpenSSH 客户端,使用客户端命令(ssh、 scp、…...

RabbitMQ基础篇之Java客户端 Topic交换机
文章目录 Topic 交换机概述 Routing Key 与 Binding Key优缺点及场景优点缺点应用场景 案例演示创建队列和交换机:消费者代码:消息发送代码:测试: 总结 Topic 交换机概述 路由机制: Topic交换机与Direct交换机类似&am…...
微服务-Sentinel新手入门指南
微服务为什么要使用流控降级组件 为了提高系统运行期间的稳定性和可用性 在微服务环境下,服务之间存在复杂的调用关系,单个服务的故障或过载可能会迅速影响到整个系统,导致服务雪崩效应。流控组件可以限制进入系统的流量,防止系…...

传统听写与大模型听写比对
在快节奏的现代生活中,听写技能仍然是学习语言和提升认知能力的重要环节。然而,传统的听写练习往往枯燥乏味,且效率不高。现在,随着人工智能技术的发展,大模型听写工具的问世,为传统听写带来了革命性的变革…...
http性能测试命令ab
华子目录 使用方法常用选项示例输出解读注意事项 在 Linux系统中, ab( ApacheBench)是一个用于 测试HTTP服务器性能的 工具。它是 Apache HTTP服务器项目的 一部分,专门设计用来模拟 多个用户对 服务器发起 并发请求&am…...
前端:轮播图常见的几种实现方式
目录 前言 一、轮播图是什么? 二、实现方法 1.使用纯 HTML、CSS、JavaScript 实现 2.使用组件来快速实现 总结 前言 在学习前端的过程中,总是有要实现轮播图效果的时候,本文就介绍了轮播图常见的几种实现方式。 一、轮播图是什么?…...

Pytest基础01: 入门demo脚本
目录 1 Pytest接口测试 1.1 最简单版hello world 1.2 pytest.ini 2 pytest兼容unittest 3 封装pytest执行入口 1 Pytest接口测试 Pyest是一个可以用于接口测试的强大框架,开源社区也有非常多的pytest插件。 按江湖传统,学习一个新语言或者新框架&…...

ruoyi 多租户 开启后针对某一条sql不适用多租户; 若依多租户sql规则修改
文章参考:多租户功能 | Ruoyi-TDesign 忽略租户 1.如果需要指定单独 SQL 不开启过滤,可在对应的 Mapper 接口添加如下忽略注解: InterceptorIgnore(tenantLine "true", dataPermission "false") 此处注意事项 使…...

driftingblues6靶机
打开靶场 查看页面源代码,最下面有一个注释,提供了一个网址 vmlist.github.io,我们去访问一下 这里是一个github页面,提供攻防虚拟机的下载,对我们解题并没有什么有用的信息,我们再去扫描端口 发现只有80端…...

Neo4j GDS 2.0 安装与配置
Neo4j GDS 2.0 安装与配置 GDS插件安装:Neo4j官方文档 1. GDS简介 Neo4j Graph Data Science (GDS) 库作为 Neo4j Graph Database 的插件提供。该插件需要安装到数据库中并在 Neo4j 配置中列入白名单。有两种主要方法可以实现这一点,我们将在本章中详…...

A*算法与人工势场法结合的路径规划(附MATLAB源码)
A*算法与人工势场法(APF)结合实现路径规划 路径规划是机器人、无人机及自动驾驶等领域中的一个重要问题。本文结合了经典的 A* 算法与 人工势场法(Artificial Potential Field, APF),实现了一种改进的路径规划方法。下…...

BootstrapTable处理表格
需求背景 历史项目使用 BootstrapTable 作为前端组件 应客户需要调整: 冻结前四列对于大文本文字显示部分内容,鼠标悬浮显示完整内容 冻结列 1、引入相关CSS,JS CSS <link rel"stylesheet" href"/css/bootstrap.min.css"> …...
UniApp 打开文件工具,获取文件类型,判断文件类型
注意:以下代码使用 typeScript 开发,如果想在 js 中使用,可参考 npm 已经发布的包:https://www.npmjs.com/package/uni-easy-file NPM 使用 如果想直接在 npm 项目中使用可以直接执行以下命令 npm i uni-easy-file然后直接使用 …...

docker-开源nocodb,使用已有数据库
使用已有数据库 创建本地数据库 数据库:nocodb 用户:nocodb 密码:xxxxxx修改docker-compose.yml 默认网关的 IP 地址是 172.17.0.1(适用于 bridge 网络模式)version: "2.1" services:nocodb:environment:…...

Mysql COUNT() 函数详解
简介 COUNT()函数定义 COUNT()函数是SQL中常用的 聚合函数 ,用于统计满足特定条件的记录数。它可以灵活地应用于各种查询场景,帮助用户快速获取所需的数据统计信息。该函数不仅能够计算所有行的数量,还能针对特定列进行计数,并支…...

单周期CPU电路设计
1.实验目的 本实验旨在让学生通过设计一个简单的单周期 CPU 电路,深入理解 RISC-V 指令集的子集功能实现,掌握数字电路设计与实现的基本流程,包括指令解析、部件组合、电路设计以及功能仿真等环节,同时培养verilog HDL编程能力和…...

从零开始采用命令行创建uniapp vue3 ts springboot项目
文章目录 1,通过命令行创建uniapp vue3 ts项目2, 创建springboot后台项目3, 联调测试 1,通过命令行创建uniapp vue3 ts项目 官方通过命令行创建项目的地址:https://zh.uniapp.dcloud.io/quickstart-cli.html 在执行下面操…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...

【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...

【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...