当前位置: 首页 > news >正文

矩阵运算提速——玩转opencv::Mat

介绍:用Eigen或opencv::Mat进行矩阵的运算,比用cpp的vector或vector进行矩阵运算要快吗?

使用 Eigen 或 OpenCV 的 cv::Mat 进行矩阵运算通常比使用 std::vector<int>std::vector<double> 更快。这主要有以下几个原因:

  1. 优化的底层实现:Eigen 和 OpenCV 都是为高效的矩阵运算而设计的库,内部实现了许多优化,例如使用 SIMD(单指令多数据)指令、并行计算等。这些优化可以显著提高计算速度。

  2. 内存布局:Eigen 和 OpenCV 在内存布局上进行了优化,通常使用连续的内存块来存储矩阵数据,这样可以提高缓存命中率,从而加快访问速度。

  3. 专用的算法:这些库提供了许多专用的算法和函数,能够高效地执行常见的矩阵运算(如乘法、求逆、特征值分解等),而使用 std::vector 进行这些操作时,通常需要手动实现算法,效率较低。

  4. 类型安全和表达能力:Eigen 提供了强类型的矩阵和向量类,能够在编译时进行更多的检查,减少运行时错误,同时也使得代码更易于阅读和维护。

因此,如果你的应用涉及大量的矩阵运算,建议使用 Eigen 或 OpenCV 这样的专用库,而不是直接使用 std::vector

构造

link1

索引

访问Mat的通道数

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个3通道的彩色图像(例如,BGR格式)cv::Mat colorImage = cv::Mat::zeros(100, 100, CV_8UC3);// 创建一个单通道的灰度图像cv::Mat grayImage = cv::Mat::zeros(100, 100, CV_8UC1);// 获取通道数int colorChannels = colorImage.channels();int grayChannels = grayImage.channels();// 输出通道数std::cout << "彩色图像的通道数: " << colorChannels << std::endl; // 应该输出3std::cout << "灰度图像的通道数: " << grayChannels << std::endl;   // 应该输出1return 0;
}

定义4维Mat

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 定义4维矩阵,大小为2x3x4x5,数据类型为CV_32F(32位浮点数)cv::Mat mat4D(2, new int[4]{3, 4, 5}, CV_32F);// 填充矩阵for (int i = 0; i < 2; ++i) {for (int j = 0; j < 3; ++j) {for (int k = 0; k < 4; ++k) {for (int l = 0; l < 5; ++l) {mat4D.at<float>(i, j, k, l) = static_cast<float>(i * 1000 + j * 100 + k * 10 + l);}}}}// 输出矩阵的形状和内容std::cout << "4维矩阵的大小: " << mat4D.size << std::endl;std::cout << "4维矩阵的内容:" << std::endl;for (int i = 0; i < 2; ++i) {for (int j = 0; j < 3; ++j) {for (int k = 0; k < 4; ++k) {for (int l = 0; l < 5; ++l) {std::cout << mat4D.at<float>(i, j, k, l) << " ";}std::cout << std::endl;}std::cout << std::endl;}}// 释放动态分配的内存delete[] mat4D.size;return 0;
}

取某一行

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个 3x3 的矩阵cv::Mat mat = (cv::Mat_<float>(3, 3) << 1, 2, 3,4, 5, 6,7, 8, 9);// 获取第 3 行(索引为 2)的所有元素cv::Mat thirdRow = mat.row(2); // 行索引从 0 开始// 输出结果std::cout << "第三行的元素是:" << std::endl;std::cout << thirdRow << std::endl;return 0;
}

提取块

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 创建一个 5x5 的矩阵cv::Mat mat = (cv::Mat_<float>(5, 5) << 1, 2, 3, 4, 5,6, 7, 8, 9, 10,11, 12, 13, 14, 15,16, 17, 18, 19, 20,21, 22, 23, 24, 25);// 定义要提取的块的起始位置和大小int startRow = 1; // 起始行索引int startCol = 1; // 起始列索引int blockRows = 3; // 块的行数int blockCols = 3; // 块的列数// 提取块cv::Mat block = mat(cv::Range(startRow, startRow + blockRows), cv::Range(startCol, startCol + blockCols));// 输出结果std::cout << "提取的块是:" << std::endl;std::cout << block << std::endl;return 0;
}

访问某行某列的元素

在C++中,使用OpenCV库的cv::Mat类来表示图像或矩阵。要访问cv::Mat中的特定行和列的元素,可以使用at(row, col)方法,其中type是元素的数据类型。

#include <iostream>
#include <opencv2/opencv.hpp>int main() {// 创建一个3x3的矩阵,类型为CV_8UC1(单通道8位无符号整数)cv::Mat mat = (cv::Mat_<uchar>(3, 3) << 1, 2, 3,4, 5, 6,7, 8, 9);// 输出整个矩阵std::cout << "矩阵内容:\n" << mat << std::endl;// 访问特定行和列的元素int row = 1; // 第二行(索引从0开始)int col = 2; // 第三列(索引从0开始)// 使用at方法访问元素uchar value = mat.at<uchar>(row, col);std::cout << "元素在 (" << row << ", " << col << ") 的值: " << (int)value << std::endl;// 修改特定行和列的元素mat.at<uchar>(row, col) = 10;std::cout << "修改后的矩阵内容:\n" << mat << std::endl;return 0;
}

示例输出:

矩阵内容:
[1, 2, 3;
4, 5, 6;
7, 8, 9]
元素在 (1, 2) 的值: 6
修改后的矩阵内容:
[1, 2, 3;
4, 5, 10;
7, 8, 9]

运算

矩阵乘法和Hamornoid积

#include <iostream>
#include <opencv2/opencv.hpp>int main() {// 创建两个相同维度的矩阵cv::Mat mat1 = (cv::Mat_<float>(2, 2) << 1, 2,3, 4);cv::Mat mat2 = (cv::Mat_<float>(2, 2) << 5, 6,7, 8);// 输出原始矩阵std::cout << "矩阵1:\n" << mat1 << std::endl;std::cout << "矩阵2:\n" << mat2 << std::endl;// 方法1:使用 cv::multiplycv::Mat result1;cv::multiply(mat1, mat2, result1);std::cout << "矩阵乘法 (使用 cv::multiply):\n" << result1 << std::endl;// 方法2:使用 cv::mulcv::Mat result2 = mat1.mul(mat2); // 也可以使用 result2 = mat1 * mat2;std::cout << "矩阵乘法 (使用运算符 *):\n" << result2 << std::endl;// 方法3:使用运算符 *cv::Mat result3 = mat1*mat2; // 也可以使用 result2 = mat1 * mat2;std::cout << "逐元素相乘结果 (使用运算符 *):\n" << result3 << std::endl;return 0;
}

类型一致

  • opencv::Mat之间的加减乘除必须保证类型相同
  • 比如cv::divide()运算
cv::divide(new_cen, cen_index[cen_id].size(), new_cen);
  • opencv::Mat的类型有如下几种:
    在这里插入图片描述* 可在初始化时指定
	Mat new_cen=Mat::zeros(1,128,CV_32FC1);

opencv::Mat是继承Eigen的实现吗?

cv::Mat并不是继承自Eigen库的实现。OpenCV和Eigen是两个独立的库,它们各自有自己的数据结构和实现方式。

OpenCV的cv::Mat

  • cv::Mat是OpenCV中用于表示图像和矩阵的主要数据结构。它提供了多种功能,包括图像处理、矩阵运算、图像读取和写入等。
  • cv::Mat支持多维数组,能够处理不同的数据类型(如8位无符号整数、浮点数等),并且可以表示单通道和多通道图像(如RGB图像)。
  • OpenCV的设计目标是高效处理图像和视频数据,特别是在计算机视觉和图像处理领域。

Eigen库:

  • Eigen是一个用于线性代数的C++模板库,提供了矩阵和向量的高效操作。它专注于数学运算,特别是线性代数、几何变换和数值计算。
  • Eigen的设计目标是提供高性能的数学运算,同时保持易用性和灵活性。

结论:

虽然OpenCV和Eigen都涉及矩阵和线性代数的概念,但它们是独立的库,cv::Mat并不继承自Eigen的实现。实际上,OpenCV和Eigen可以一起使用,开发者可以在OpenCV中处理图像数据,然后使用Eigen进行更复杂的数学运算,或者反之亦然。两者之间的结合可以利用各自的优势。

相关文章:

矩阵运算提速——玩转opencv::Mat

介绍:用Eigen或opencv::Mat进行矩阵的运算&#xff0c;比用cpp的vector或vector进行矩阵运算要快吗? 使用 Eigen 或 OpenCV 的 cv::Mat 进行矩阵运算通常比使用 std::vector<int> 或 std::vector<double> 更快。这主要有以下几个原因&#xff1a; 优化的底层实现…...

C++软件设计模式之模板方法模式

模板方法模式是面向对象软件设计模式之一&#xff0c;其主要意图是在一个方法中定义一个算法的骨架&#xff0c;而将一些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的情况下重新定义算法的某些特定步骤。 动机 在软件开发中&#xff0c;常常会遇到这样的情…...

神经网络的初始化方式都有哪些?

一、概念 神经网络的初始化是深度学习中的一个关键步骤&#xff0c;它指的是在训练开始前为神经网络的权重和偏置设置初始值。合适的初始化方法可以加速模型的收敛&#xff0c;提高训练效果&#xff0c;甚至影响模型的最终性能。当然&#xff0c;目前我们使用Torch、TensorFlow…...

const成员函数

在c中经常看到这样的声明&#xff1a; class A{ ... int fun1() const; //const成员函数 int fun2() const; //const成员函数private: int a; //属于状态 static int b; //不属于状态&#xff0c;属于类 } 这个const关键字声明了这个函数是const成员函数&#xff0c;con…...

物理知识1——电流

说起电流&#xff0c;应该从电荷说起&#xff0c;而说起电荷&#xff0c;应该从原子说起。 1 原子及其结构 常见的物质是由分子构成的&#xff0c;而分子又是由原子构成的&#xff0c;有的分子是由多个原子构成&#xff0c;有的分子只由一个原子构成。而原子的构成如图1所示。…...

车载通信架构 --- 智能汽车通信前沿技术

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源,以现象替代逻辑,以情绪代替思考,把消极接受现实的懦弱,伪装成乐观面对不幸的…...

Flutter中添加全局防护水印的实现

随着版权意识的加强&#xff0c;越来越多的应用开始在应用内部增加各种各样的水印信息&#xff0c;防止核心信息泄露&#xff0c;便于朔源。 效果如下&#xff1a; 在Flutter中增加全局水印的方式&#xff0c;目前有两种实现。 方案一&#xff0c;在native层添加一个遮罩层&a…...

BGP(Border Gateway Protocol)路由收集器

全球 BGP&#xff08;边界网关协议&#xff09;路由收集器的分布情况以及相关数据。以下是主要的信息解读&#xff1a; 地图标记&#xff1a; 每个绿色点代表一个路由收集器的位置。路由收集器分布在全球不同的地区&#xff0c;覆盖了五大区域&#xff1a; ARIN&#xff08;美…...

【DAGMM】直接跑tip

1.from sklearn.externals import joblib 版本高 joblib没有 直接pip install joblib&#xff0c;然后 import joblib 2.AttributeError: module ‘tensorflow’ has no attribute ‘set_random_seed’ # tf.set_random_seed(args.seed)#tf<2.0 tf.random.set_seed(args.s…...

vscode中调用deepseek实现AI辅助编程

来自 Python大数据分析 费弗里 1 简介 大家好我是费老师&#xff0c;最近国产大模型Deepseek v3新版本凭借其优秀的模型推理能力&#xff0c;讨论度非常之高&#x1f525;&#xff0c;且其官网提供的相关大模型API接口服务价格一直走的“价格屠夫”路线&#xff0c;性价比很高…...

AI大模型语音识别转文字

提取音频 本项目作用在于将常见的会议录音文件、各种语种音频文件进行转录成相应的文字&#xff0c;也可从特定视频中提取对应音频进行转录成文字保存在本地。最原始的从所给网址下载对应视频和音频进行处理。下载ffmpeg(https://www.gyan.dev/ffmpeg/builds/packages/ffmpeg-…...

可由 (5V) 单片机直接驱动的模块

可由 &#xff08;5V&#xff09; 单片机 直接驱动的模块 1. 传感器类 元器件描述温度传感器DS18B20&#xff08;数字温度传感器&#xff09;光强传感器光敏电阻&#xff08;通过 ADC 读取&#xff09;红外传感器红外接收模块&#xff08;如 VS1838&#xff09;超声波传感器HC…...

vue使用树形结构展示文件和文件夹

1. 树形结构显示 显示文件夹和文件&#xff1a;使用 el-tree 组件展示树形结构&#xff0c;文件夹和文件的图标通过 el-icon 进行动态显示。文件夹使用 Folder 图标&#xff0c;文件使用 Files 图标。节点点击&#xff1a;点击树形节点后&#xff0c;会将选中的节点保存到 sel…...

PHP框架+gatewayworker实现在线1对1聊天--聊天界面布局+创建websocket连接(5)

文章目录 聊天界面布局html代码 创建websocket连接为什么要绑定&#xff1f; 聊天界面布局 在View/Index目录下创建index.html html代码 <div id"chat"><div id"nbar"><div class"pull-left">与牛德胜正在聊天...</div…...

LinuxUbuntu打开VSCode白屏解决方案

解决方法是 以root权限打开VSCode sudo /usr/share/code/code --no-sandbox --unity-launch...

在 ESP 上运行 AWTK

AWTK 基于 esp 的移植。 测试硬件平台为 ESP32-S3-Touch-LCD-4.3&#xff0c;其它平台请根据实际平台自行调整。 安装下载工具 建议下载离线版本 ESP IDF v5.3.2 下载代码 git clone https://github.com/zlgopen/awtk-esp.git cd awtk-esp git clone https://github.com/zlg…...

硬件工程师面试题 21-30

把常见的硬件面试题进行总结&#xff0c;方便及时巩固复习。其中包括网络上的资源、大佬们的大厂面试题&#xff0c;其中可能会题目类似&#xff0c;加强印象即可。 更多硬件面试题&#xff1a;硬件工程师面试题 1-10硬件工程师面试题 11-20 21、单片机最小系统需要什么&#x…...

开源架构的容器化部署优化版

上三篇文章推荐&#xff1a; 开源架构的微服务架构实践优化版&#xff08;New&#xff09; 开源架构中的数据库选择优化版&#xff08;New&#xff09; 开源架构学习指南&#xff1a;文档与资源的智慧锦囊&#xff08;New&#xff09; 我管理的社区推荐&#xff1a;【青云交社区…...

Qt使用CMake编译项目时报错:#undefined reference to `vtable for MainView‘

博主将.h文件和.cpp文件放到了不同的文件目录下面&#xff0c;如下图所示&#xff1a; 于是构建项目的时候就报错了#undefined reference to vtable for MainView&#xff0c;这个是由于src/view目录下的CMake无法自动moc头文件导致的&#xff0c;需要手动moc include/view目录…...

python学习笔记—12—

1. 布尔类型 (1) 定义 (2) 比较运算符 (3) 代码演示 1. 手动定义 bool_1 True bool_2 False print(f"bool_1的内容是&#xff1a;{bool_1}, 类型是&#xff1a;{type(bool_1)}") print(f"bool_2的内容是&#xff1a;{bool_2}, 类型是&#xff1a;{type(bool…...

==和===的区别,被坑的一天

在 JavaScript 中&#xff0c; 和 都用于比较两个值&#xff0c;但它们有一个重要的区别&#xff1a; 1. (宽松相等运算符) 进行比较时&#xff0c;会 自动类型转换&#xff08;也叫做强制类型转换&#xff09;&#xff0c;即如果比较的两个值的类型不同&#xff0c;JavaScr…...

基于 GPUTasker 的 GPU 使用情况钉钉推送机器人实现

引言 https://github.com/cnstark/gputasker 随着 AI 模型的广泛应用&#xff0c;GPU 成为团队中最重要的资源之一。然而&#xff0c;如何实时监控 GPU 的使用情况并及时通知团队是一个值得关注的问题。为了更好地管理显卡资源&#xff0c;本文基于 GPUTasker&#xff0c;实现了…...

Python自学 - 函数初步(内置函数、模块函数、自定义函数)

1 Python自学 - 函数初步(内置函数、模块函数、自定义函数) 1.1 内置函数 几乎所有的编程都会提供一些内置函数&#xff0c;以便完成一些最基本的任务&#xff0c;Python提供了丰富的内置函数&#xff0c;熟悉内置函数可以给工作带来极大便利。   Python官方的内置函数介绍网…...

【生活】冬天如何选口罩(医用口罩,N95, KN95还是KP95?带不带呼吸阀门?带不带活性炭?)

&#x1f4a1;总结一下就是&#xff1a; 日常防护的话&#xff0c;医用口罩就可以啦。要是想长时间佩戴N95&#xff08;KN95&#xff09;口罩的话也可以. 在高风险环境&#xff08;像医院、疫情防控期间&#xff09;&#xff0c;一定要选不带呼吸阀门的N95口罩KN95&#xff09…...

HTML5新特性|01 音频视频

音频 1、Audio (音频) HTML5提供了播放音频文件的标准 2、control(控制器) control 属性供添加播放、暂停和音量控件 3、标签: <audio> 定义声音 <source> 规定多媒体资源,可以是多个<!DOCTYPE html> <html lang"en"> <head><…...

迅为RK3568开发板编译Android12源码包-设置屏幕配置

在源码编译之前首先要确定自己想要使用的屏幕并修改源码&#xff0c;在编译镜像&#xff0c;烧写镜像。如下图所示&#xff1a; 第一步&#xff1a;确定要使用的屏幕种类&#xff0c;屏幕种类选择如下所示&#xff1a; iTOP-3568 开发板支持以下种类屏幕&#xff1a; 迅为 LV…...

力扣hot100——图论

200. 岛屿数量 class Solution { public:int numIslands(vector<vector<char>>& grid) {int ans 0;vector<int> dx { 0, 1, 0, -1 };vector<int> dy { 1, 0, -1, 0 };int n grid.size(), m grid[0].size();vector<vector<int>> …...

Docker- Unable to find image “hello-world“locally

Docker- Unable to find image “hello-world“locally 文章目录 Docker- Unable to find image “hello-world“locally问题描述一. 切换镜像1. 编辑镜像源2. 切换镜像内容 二、 检查设置1、 重启dockers2、 检查配置是否生效3. Docker镜像源检查4. Dokcer执行测试 三、自定义…...

spring-boot启动源码分析(二)之SpringApplicationRunListener

在上一篇《spring-boot启动源码分析&#xff08;一&#xff09;之SpringApplication实例构造》后&#xff0c;继续看了一个月的Spring boot启动源码&#xff0c;初步把流程看完了&#xff0c;接下来会不断输出总结&#xff0c;以巩固这段时间的学习。同时也希望能帮到同样感兴趣…...

ELK入门教程(超详细)

什么是ELK&#xff1f; ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称(后来出现的filebeat属于beats家族中的一员&#xff0c;可以用来替代logstash的数据收集功能&#xff0c;比较轻量级)&#xff0c;也被称为Elastic Stack。 Filebeat Filebeat是用于转…...