当前位置: 首页 > news >正文

分类模型评估利器-混淆矩阵

相关文章

地理时空动态模拟工具介绍(上)
地理时空动态模拟工具介绍(下)地理时空动态模拟工具的使用方法

前言

混淆矩阵(Confusion Matrix)是机器学习领域中用于评估分类模型性能的一种工具。它通过矩阵的形式,将模型的预测结果与实际分类进行比较,从而可以直观地展示分类模型的性能及精度。通常,混淆矩阵用于二分类问题(例如是否患有某种疾病),但是在GIS的分类模型中,多分类问题更为常见(例如多种土地利用类型)。

01 混淆矩阵的类别介绍

二分类混淆矩阵

对于二分类问题,混淆矩阵包含四个主要部分:

1. True Positive (TP):模型正确预测为正类的实例数量。(真阳性)

2. False Positive (FP):模型错误预测为正类(实际上是负类)的实例数量。(假阳性)

3. False Negative (FN):模型错误预测为负类(实际上是正类)的实例数量。(假阴性)

4. True Negative (TN):模型正确预测为负类的实例数量。(真阴性)

二分类混淆矩阵的结构如下:

实际正类

实际负类

预测正类

TP

FP

预测负类

FN

TN

多分类混淆矩阵

多分类混淆矩阵的每行代表预测类别,每列代表实际类别,对角线上的值表示正确分类的数量,非对角线上的值表示错误分类的数量。

例如,对于一个有3个类别(A、B、C)的多分类问题,混淆矩阵的结构如下:

实际为A

实际为B

实际为C

预测为A

a11

a12

a13

预测为B

a21

a22

a23

预测为C

a31

a32

a33

其中a11、a22、a33为正确的分类。类别还可以更多。同样,多分类矩阵将非对角线上的值进行合并,也可得到二分类中的TP、FP、TN、FN等相关值。

02 混淆矩阵的扩展

通过混淆矩阵,我们可以计算出多种评估指标,例如:

• 准确率(Accuracy):(TP + TN) / (TP + TN + FP + FN)

• 精确率(Precision):TP / (TP + FP)

• 召回率(Recall):TP / (TP + FN)

• F1分数(F1-Score):2 * (Precision * Recall) / (Precision + Recall)

这些指标可以帮助我们更加全面评估模型的性能,更常用于深度学习等方法中。

03 如何读懂GeoScene Pro中的混淆矩阵

Pro中的混淆矩阵,除有分类之外,还会包含U_Accuracy、P_Accuracy以及kappa系数等信息。以下表为例。

实际

预测

C_1

C_2

C_3

总计

U_Accuracy

kappa

C_1

49

4

4

57

0.8594

0

C_2

2

40

2

44

0.9091

0

C_3

3

3

59

65

0.9077

0

总计

54

47

65

166

0

0

P_Accuracy

0.9074

0.8511

0.9077

0

0.8916

0

kappa

0

0

0

0

0

0.8357

矩阵中共有3类样本。对角线上预测全部正确的共有49+40+59个样本,总数量为166,其交并比(IoU)为148/166=0.8916。

U_Accuracy字段叫做用户精度,也叫错分误差,表示预测中其他类被错分为成指定类。以第一行为例, 49个1类判断正确,4个实际为2类以及4个实际为3类的样本被错误判断为1类,1类的U_Accuracy为49/57。

P_Accuracy字段叫做制作者精度,也叫漏分误差,表示预测中指定类错报成其他类。以第一列为例,其中49个1类判断正确,2个实际为1类的样本错报成2类,3个实际为1类的样本错报成3类,1类的P_Accuracy为54/57。

表中的0.8916为整体精度。

kappa系数为0.8357,它是混淆矩阵的核心,用于整体评估分类的精度。

其公式如下:

是每一类正确分类的样本数量之和除以总样本数,即上文中提及的交并比=0.8916。

的计算公式如下:

各类实际样本数量为

,预测样本数量为

,总样本数量为n,类别总数为C。

的实际计算方法为

在带入Kappa公式

在分类模型精度评估中,Kappa指数如果大于0.75,就可以认为该模型整体精度比较高,预测结果可信。

04 如何在GeoScene Pro软件中计算混淆矩阵

上一节中我们已经了解到混淆矩阵主要用在分类问题中,用于对比预测和实际类型,从而计算分类结果的精度。在Pro中共计三步来完成混淆矩阵的计算。

第一步:使用创建精度评估点工具构建随机点。

创建精度评估点工具可以创建随机采样点,用于分类后精度评估,同时还可以将预测数据或实际数据的分类结果提取至采样点中。

创建精度评估点工具

该工具中的“输入栅格数据或要素类数据”可以是预测或实际类型数据本,需要注意必须与“目标字段”参数对应。

第二步:使用更新精度评估点工具补充随机点属性。

更新精度评估点工具可以选择实际或预测类型数据,也必须与“目标字段”参数对应。

更新精度评估点工具

上述两步运行完成后,打开精度评估点的属性表,包含Classfied字段(预测分类属性),GrndTruth字段(实际分类属性)。

精度评估表的属性表

第三步:使用计算混淆矩阵工具计算结果。

计算混淆矩阵工具

即可得到混淆矩阵。

混淆矩阵表

为简化上述步骤,还可以将上述工具制作成模型构建器。

混淆矩阵模型构建器

进一步还可以将模型构建器进行封装,制作成地理处理工具。

混淆矩阵综合工具

相关文章:

分类模型评估利器-混淆矩阵

相关文章 地理时空动态模拟工具介绍(上) 地理时空动态模拟工具介绍(下)地理时空动态模拟工具的使用方法 前言 混淆矩阵(Confusion Matrix)是机器学习领域中用于评估分类模型性能的一种工具。它通过矩阵的…...

算法题(23):只出现一次的数字

初级: 审题: 需要输出只出现了一次的数据,其他数据均出现了两次 思路: 若不限制空间复杂度: 方法一:哈希表 用哈希映射循环一次,把对应数字出现的次数记录到数组里面,然后再遍历一次…...

@RestController与@Controller区别

区别1: RestController是Controller的升级版 区别2: RestController用于标识一个类作为控制器,并且可以处理HTTP请求。控制器类通常用于接收用户输入并决定返回响应的内容。 RestController通常用于返回JSON或XML数据 区别3:…...

使用ExecutorService和@Async来使用多线程

文章目录 使用ExecutorService和Async来使用多线程采用ExecutorService来使用多线程多线程过程的详细解释注意事项优点 使用Async来使用多线程对比Async和ExecutorService的多线程使用方式使用 ExecutorService 的服务类使用 Async 的服务类异步任务类自定义线程池主应用类解释…...

计算机网络 (19)扩展的以太网

前言 以太网(Ethernet)是一种局域网(LAN)技术,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网技术不断演进,从最初的10Mbps到如今的10Gbps、25Gbps、40Gbps、100Gbps等,已成…...

构造器/构造方法

1. 构造器 1.1 概述 先浏览下面简单代码; class Cons{ // 属性int age;String name; // 方法public void show(){System.out.println("age"age);} } class ConsTest{public static void main(String[] args) {Cons c new Cons();// Cons() 就是…...

异常

目录 1. 异常的概念及使用 1.1 异常的概念 1.2 异常的抛出和捕获 1.3 栈展开 1.4 查找匹配的处理代码 1.5 异常的重新抛出 1.6 异常安全问题 1.7 异常规范 2. 标准库的异常 1. 异常的概念及使用 1.1 异常的概念 异常处理机制允许程序中独⽴开发的部分能够在运⾏时就…...

MySQL中distinct和group by去重的区别

MySQL中distinct和group by去重的区别 在MySQL中,我们经常需要对查询结果进行去重,而DISTINCT和GROUP BY是实现这一功能的两种常见方法。虽然它们在很多情况下可以互换使用,但它们之间还是存在一些差异的。接下来,我们将通过创建测…...

Qt判别不同平台操作系统调用相应动态库读取RFID

本示例使用的读卡器&#xff1a;https://item.taobao.com/item.htm?spma21dvs.23580594.0.0.52de2c1b8jdyXi&ftt&id562957272162 #include <QDebug> #include "mainwindow.h" #include "./ui_mainwindow.h" #include "QLibrary"…...

vue2+echarts实现水球+外层动效

实现效果 安装echarts-liquidfill 需要安装echarts-liquidfill&#xff01;&#xff01;&#xff01;需要安装echarts-liquidfill&#xff01;&#xff01;&#xff01;需要安装echarts-liquidfill&#xff01;&#xff01;&#xff01; 安装命令 npm install echarts-liqui…...

C++ 基础思维导图(一)

目录 1、C基础 IO流 namespace 引用、const inline、函数参数 重载 2、类和对象 类举例 3、 内存管理 new/delete 对象内存分布 内存泄漏 4、继承 继承权限 继承中的构造与析构 菱形继承 1、C基础 IO流 #include <iostream> #include <iomanip> //…...

【gopher的java学习笔记】依赖管理方式对比(go mod maven)

什么是go mod go mod是Go语言官方引入的模块管理工具&#xff0c;旨在简化项目依赖管理&#xff0c;提高构建的可重复性和稳定性。以下是关于go mod的详细介绍&#xff1a; 在go mod之前&#xff0c;Go语言主要依赖GOPATH和vendor目录来管理项目依赖。然而&#xff0c;这种方式…...

CTFshow—远程命令执行

29-35 Web29 代码利用正则匹配过滤了flag&#xff0c;后面加了/i所以不区分大小写。 可以利用通配符绕过 匹配任何字符串&#xff0f;文本&#xff0c;包括空字符串&#xff1b;*代表任意字符&#xff08;0个或多个&#xff09; ls file * ? 匹配任何一个字符&#xff08;不…...

Qt之简易音视频播放器设计(十五)

Qt开发 系列文章 - MediaPlayer&#xff08;十五&#xff09; 目录 前言 一、QMediaPlayer 二、实现方式 1.添加multimedia 2.创建类vedioplayer 3.UI设计 4.用户使用 5.效果演示 总结 前言 利用Qt进行音视频播放器设计&#xff0c;首先比较方便使用的是Qt自带的音视…...

ArrayList 和LinkedList的区别比较

前言 ‌ArrayList和LinkedList的主要区别在于它们的底层数据结构、性能特点以及适用场景。‌ArrayList和LinkedList从名字分析&#xff0c;他们一个是Array&#xff08;动态数组&#xff09;的数据结构&#xff0c;一个是Linked&#xff08;链表&#xff09;的数据结构&#x…...

Wallpaper壁纸制作学习记录13

骨骼物理模拟 Wallpaper Engine还允许您为人偶变形骨骼配置某些物理模拟。选择骨骼时&#xff0c;点击编辑约束来配置骨骼这些属性。 警告 请记住&#xff0c;物理模拟可能会根据用户的最大FPS设置略微改变其行为。 Wallpaper Engine编辑器将始终以高帧速率渲染。您可以将壁纸…...

Visual Studio 2022安装教程

1、下载网址 Visual Studio 2022 IDE安装网址借助 Visual Studio 设计&#xff0c;具有自动完成、构建、调试、测试功能的代码将与 Git 管理和云部署融为一体。https://visualstudio.microsoft.com/zh-hans/vs/ 点击图片所示 双击运行 2、安装 点击C桌面开发&#xff08;右边…...

std__invoke 的使用

std__invoke 的使用 文章目录 std__invoke 的使用1. std::invoke 的功能2. 语法3. 使用场景1. 调用普通函数2. 调用成员函数3. 调用成员函数&#xff08;通过指针或引用&#xff09;4. 调用函数对象&#xff08;仿函数&#xff09;5. 调用 Lambda 表达式 4. std::invoke 的优势…...

2501d,d.109

原文 2.109.0带来了15个主要更改和26个修复的Bugzilla问题.非常感谢39位贡献者,是他们使2.109.0变成可能. 更改编译器 1,[下一版]现在,为类型实例的成员设置别名是个错误 2,添加位字段内省功能 3,添加了从CTFE写入消息的__ctfeWrite 4,现在-verrors也限制弃用警告 5,dtoh为e…...

1、蓝牙打印机环境搭建

本项目采用stm32f103c8T6芯片&#xff0c;通过库函数实现打印功能&#xff0c;并配置有小程序蓝牙通信上位机。 1、创建文件夹目录 core文件夹存放核心库文件 LIB文件夹存放标准库函数文件 这里可以删减&#xff0c;用不到的可以不要。 obj存放编译后的文件 project存放项目…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...