分类模型评估利器-混淆矩阵
相关文章
地理时空动态模拟工具介绍(上)
地理时空动态模拟工具介绍(下)地理时空动态模拟工具的使用方法
前言
混淆矩阵(Confusion Matrix)是机器学习领域中用于评估分类模型性能的一种工具。它通过矩阵的形式,将模型的预测结果与实际分类进行比较,从而可以直观地展示分类模型的性能及精度。通常,混淆矩阵用于二分类问题(例如是否患有某种疾病),但是在GIS的分类模型中,多分类问题更为常见(例如多种土地利用类型)。
01 混淆矩阵的类别介绍
二分类混淆矩阵
对于二分类问题,混淆矩阵包含四个主要部分:
1. True Positive (TP):模型正确预测为正类的实例数量。(真阳性)
2. False Positive (FP):模型错误预测为正类(实际上是负类)的实例数量。(假阳性)
3. False Negative (FN):模型错误预测为负类(实际上是正类)的实例数量。(假阴性)
4. True Negative (TN):模型正确预测为负类的实例数量。(真阴性)
二分类混淆矩阵的结构如下:
实际正类 | 实际负类 | |
预测正类 | TP | FP |
预测负类 | FN | TN |
多分类混淆矩阵
多分类混淆矩阵的每行代表预测类别,每列代表实际类别,对角线上的值表示正确分类的数量,非对角线上的值表示错误分类的数量。
例如,对于一个有3个类别(A、B、C)的多分类问题,混淆矩阵的结构如下:
实际为A | 实际为B | 实际为C | |
预测为A | a11 | a12 | a13 |
预测为B | a21 | a22 | a23 |
预测为C | a31 | a32 | a33 |
其中a11、a22、a33为正确的分类。类别还可以更多。同样,多分类矩阵将非对角线上的值进行合并,也可得到二分类中的TP、FP、TN、FN等相关值。
02 混淆矩阵的扩展
通过混淆矩阵,我们可以计算出多种评估指标,例如:
• 准确率(Accuracy):(TP + TN) / (TP + TN + FP + FN)
• 精确率(Precision):TP / (TP + FP)
• 召回率(Recall):TP / (TP + FN)
• F1分数(F1-Score):2 * (Precision * Recall) / (Precision + Recall)
这些指标可以帮助我们更加全面评估模型的性能,更常用于深度学习等方法中。
03 如何读懂GeoScene Pro中的混淆矩阵
Pro中的混淆矩阵,除有分类之外,还会包含U_Accuracy、P_Accuracy以及kappa系数等信息。以下表为例。
实际 预测 | C_1 | C_2 | C_3 | 总计 | U_Accuracy | kappa |
C_1 | 49 | 4 | 4 | 57 | 0.8594 | 0 |
C_2 | 2 | 40 | 2 | 44 | 0.9091 | 0 |
C_3 | 3 | 3 | 59 | 65 | 0.9077 | 0 |
总计 | 54 | 47 | 65 | 166 | 0 | 0 |
P_Accuracy | 0.9074 | 0.8511 | 0.9077 | 0 | 0.8916 | 0 |
kappa | 0 | 0 | 0 | 0 | 0 | 0.8357 |
矩阵中共有3类样本。对角线上预测全部正确的共有49+40+59个样本,总数量为166,其交并比(IoU)为148/166=0.8916。
U_Accuracy字段叫做用户精度,也叫错分误差,表示预测中其他类被错分为成指定类。以第一行为例, 49个1类判断正确,4个实际为2类以及4个实际为3类的样本被错误判断为1类,1类的U_Accuracy为49/57。
P_Accuracy字段叫做制作者精度,也叫漏分误差,表示预测中指定类错报成其他类。以第一列为例,其中49个1类判断正确,2个实际为1类的样本错报成2类,3个实际为1类的样本错报成3类,1类的P_Accuracy为54/57。
表中的0.8916为整体精度。
kappa系数为0.8357,它是混淆矩阵的核心,用于整体评估分类的精度。
其公式如下:
是每一类正确分类的样本数量之和除以总样本数,即上文中提及的交并比=0.8916。
的计算公式如下:
各类实际样本数量为
,预测样本数量为
,总样本数量为n,类别总数为C。
的实际计算方法为
在带入Kappa公式
在分类模型精度评估中,Kappa指数如果大于0.75,就可以认为该模型整体精度比较高,预测结果可信。
04 如何在GeoScene Pro软件中计算混淆矩阵
上一节中我们已经了解到混淆矩阵主要用在分类问题中,用于对比预测和实际类型,从而计算分类结果的精度。在Pro中共计三步来完成混淆矩阵的计算。
第一步:使用创建精度评估点工具构建随机点。
创建精度评估点工具可以创建随机采样点,用于分类后精度评估,同时还可以将预测数据或实际数据的分类结果提取至采样点中。
创建精度评估点工具
该工具中的“输入栅格数据或要素类数据”可以是预测或实际类型数据本,需要注意必须与“目标字段”参数对应。
第二步:使用更新精度评估点工具补充随机点属性。
更新精度评估点工具可以选择实际或预测类型数据,也必须与“目标字段”参数对应。
更新精度评估点工具
上述两步运行完成后,打开精度评估点的属性表,包含Classfied字段(预测分类属性),GrndTruth字段(实际分类属性)。
精度评估表的属性表
第三步:使用计算混淆矩阵工具计算结果。
计算混淆矩阵工具
即可得到混淆矩阵。
混淆矩阵表
为简化上述步骤,还可以将上述工具制作成模型构建器。
混淆矩阵模型构建器
进一步还可以将模型构建器进行封装,制作成地理处理工具。
混淆矩阵综合工具
相关文章:

分类模型评估利器-混淆矩阵
相关文章 地理时空动态模拟工具介绍(上) 地理时空动态模拟工具介绍(下)地理时空动态模拟工具的使用方法 前言 混淆矩阵(Confusion Matrix)是机器学习领域中用于评估分类模型性能的一种工具。它通过矩阵的…...

算法题(23):只出现一次的数字
初级: 审题: 需要输出只出现了一次的数据,其他数据均出现了两次 思路: 若不限制空间复杂度: 方法一:哈希表 用哈希映射循环一次,把对应数字出现的次数记录到数组里面,然后再遍历一次…...

@RestController与@Controller区别
区别1: RestController是Controller的升级版 区别2: RestController用于标识一个类作为控制器,并且可以处理HTTP请求。控制器类通常用于接收用户输入并决定返回响应的内容。 RestController通常用于返回JSON或XML数据 区别3:…...

使用ExecutorService和@Async来使用多线程
文章目录 使用ExecutorService和Async来使用多线程采用ExecutorService来使用多线程多线程过程的详细解释注意事项优点 使用Async来使用多线程对比Async和ExecutorService的多线程使用方式使用 ExecutorService 的服务类使用 Async 的服务类异步任务类自定义线程池主应用类解释…...

计算机网络 (19)扩展的以太网
前言 以太网(Ethernet)是一种局域网(LAN)技术,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网技术不断演进,从最初的10Mbps到如今的10Gbps、25Gbps、40Gbps、100Gbps等,已成…...

构造器/构造方法
1. 构造器 1.1 概述 先浏览下面简单代码; class Cons{ // 属性int age;String name; // 方法public void show(){System.out.println("age"age);} } class ConsTest{public static void main(String[] args) {Cons c new Cons();// Cons() 就是…...

异常
目录 1. 异常的概念及使用 1.1 异常的概念 1.2 异常的抛出和捕获 1.3 栈展开 1.4 查找匹配的处理代码 1.5 异常的重新抛出 1.6 异常安全问题 1.7 异常规范 2. 标准库的异常 1. 异常的概念及使用 1.1 异常的概念 异常处理机制允许程序中独⽴开发的部分能够在运⾏时就…...

MySQL中distinct和group by去重的区别
MySQL中distinct和group by去重的区别 在MySQL中,我们经常需要对查询结果进行去重,而DISTINCT和GROUP BY是实现这一功能的两种常见方法。虽然它们在很多情况下可以互换使用,但它们之间还是存在一些差异的。接下来,我们将通过创建测…...

Qt判别不同平台操作系统调用相应动态库读取RFID
本示例使用的读卡器:https://item.taobao.com/item.htm?spma21dvs.23580594.0.0.52de2c1b8jdyXi&ftt&id562957272162 #include <QDebug> #include "mainwindow.h" #include "./ui_mainwindow.h" #include "QLibrary"…...

vue2+echarts实现水球+外层动效
实现效果 安装echarts-liquidfill 需要安装echarts-liquidfill!!!需要安装echarts-liquidfill!!!需要安装echarts-liquidfill!!! 安装命令 npm install echarts-liqui…...

C++ 基础思维导图(一)
目录 1、C基础 IO流 namespace 引用、const inline、函数参数 重载 2、类和对象 类举例 3、 内存管理 new/delete 对象内存分布 内存泄漏 4、继承 继承权限 继承中的构造与析构 菱形继承 1、C基础 IO流 #include <iostream> #include <iomanip> //…...

【gopher的java学习笔记】依赖管理方式对比(go mod maven)
什么是go mod go mod是Go语言官方引入的模块管理工具,旨在简化项目依赖管理,提高构建的可重复性和稳定性。以下是关于go mod的详细介绍: 在go mod之前,Go语言主要依赖GOPATH和vendor目录来管理项目依赖。然而,这种方式…...

CTFshow—远程命令执行
29-35 Web29 代码利用正则匹配过滤了flag,后面加了/i所以不区分大小写。 可以利用通配符绕过 匹配任何字符串/文本,包括空字符串;*代表任意字符(0个或多个) ls file * ? 匹配任何一个字符(不…...

Qt之简易音视频播放器设计(十五)
Qt开发 系列文章 - MediaPlayer(十五) 目录 前言 一、QMediaPlayer 二、实现方式 1.添加multimedia 2.创建类vedioplayer 3.UI设计 4.用户使用 5.效果演示 总结 前言 利用Qt进行音视频播放器设计,首先比较方便使用的是Qt自带的音视…...

ArrayList 和LinkedList的区别比较
前言 ArrayList和LinkedList的主要区别在于它们的底层数据结构、性能特点以及适用场景。ArrayList和LinkedList从名字分析,他们一个是Array(动态数组)的数据结构,一个是Linked(链表)的数据结构&#x…...

Wallpaper壁纸制作学习记录13
骨骼物理模拟 Wallpaper Engine还允许您为人偶变形骨骼配置某些物理模拟。选择骨骼时,点击编辑约束来配置骨骼这些属性。 警告 请记住,物理模拟可能会根据用户的最大FPS设置略微改变其行为。 Wallpaper Engine编辑器将始终以高帧速率渲染。您可以将壁纸…...

Visual Studio 2022安装教程
1、下载网址 Visual Studio 2022 IDE安装网址借助 Visual Studio 设计,具有自动完成、构建、调试、测试功能的代码将与 Git 管理和云部署融为一体。https://visualstudio.microsoft.com/zh-hans/vs/ 点击图片所示 双击运行 2、安装 点击C桌面开发(右边…...

std__invoke 的使用
std__invoke 的使用 文章目录 std__invoke 的使用1. std::invoke 的功能2. 语法3. 使用场景1. 调用普通函数2. 调用成员函数3. 调用成员函数(通过指针或引用)4. 调用函数对象(仿函数)5. 调用 Lambda 表达式 4. std::invoke 的优势…...

2501d,d.109
原文 2.109.0带来了15个主要更改和26个修复的Bugzilla问题.非常感谢39位贡献者,是他们使2.109.0变成可能. 更改编译器 1,[下一版]现在,为类型实例的成员设置别名是个错误 2,添加位字段内省功能 3,添加了从CTFE写入消息的__ctfeWrite 4,现在-verrors也限制弃用警告 5,dtoh为e…...

1、蓝牙打印机环境搭建
本项目采用stm32f103c8T6芯片,通过库函数实现打印功能,并配置有小程序蓝牙通信上位机。 1、创建文件夹目录 core文件夹存放核心库文件 LIB文件夹存放标准库函数文件 这里可以删减,用不到的可以不要。 obj存放编译后的文件 project存放项目…...

Axure RP11安装学习
安装: 官网下载地址:Axure RP - UX Prototypes, Specifications, and Diagrams in One Tool 设置自己的安装目录,一步步安装即可。 汉化: 汉化包下载地址: 链接: https://pan.baidu.com/s/1eIRoGkVqAY3u3I27lgDJ6A…...

axios和fetch的实现原理以及区别,与XMLHttpRequest的关系,并结合react封装统一请求示例
Axios 和 Fetch 对比及统一请求封装 1. Axios 基础用法 1.1 安装和引入 // 安装 npm install axios// 引入 import axios from axios;1.2 基本请求方法 // GET 请求 axios.get(/api/users).then(response > console.log(response.data)).catch(error > console.error…...

矩阵运算提速——玩转opencv::Mat
介绍:用Eigen或opencv::Mat进行矩阵的运算,比用cpp的vector或vector进行矩阵运算要快吗? 使用 Eigen 或 OpenCV 的 cv::Mat 进行矩阵运算通常比使用 std::vector<int> 或 std::vector<double> 更快。这主要有以下几个原因: 优化的底层实现…...

C++软件设计模式之模板方法模式
模板方法模式是面向对象软件设计模式之一,其主要意图是在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的情况下重新定义算法的某些特定步骤。 动机 在软件开发中,常常会遇到这样的情…...
神经网络的初始化方式都有哪些?
一、概念 神经网络的初始化是深度学习中的一个关键步骤,它指的是在训练开始前为神经网络的权重和偏置设置初始值。合适的初始化方法可以加速模型的收敛,提高训练效果,甚至影响模型的最终性能。当然,目前我们使用Torch、TensorFlow…...

const成员函数
在c中经常看到这样的声明: class A{ ... int fun1() const; //const成员函数 int fun2() const; //const成员函数private: int a; //属于状态 static int b; //不属于状态,属于类 } 这个const关键字声明了这个函数是const成员函数,con…...

物理知识1——电流
说起电流,应该从电荷说起,而说起电荷,应该从原子说起。 1 原子及其结构 常见的物质是由分子构成的,而分子又是由原子构成的,有的分子是由多个原子构成,有的分子只由一个原子构成。而原子的构成如图1所示。…...

车载通信架构 --- 智能汽车通信前沿技术
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源,以现象替代逻辑,以情绪代替思考,把消极接受现实的懦弱,伪装成乐观面对不幸的…...

Flutter中添加全局防护水印的实现
随着版权意识的加强,越来越多的应用开始在应用内部增加各种各样的水印信息,防止核心信息泄露,便于朔源。 效果如下: 在Flutter中增加全局水印的方式,目前有两种实现。 方案一,在native层添加一个遮罩层&a…...

BGP(Border Gateway Protocol)路由收集器
全球 BGP(边界网关协议)路由收集器的分布情况以及相关数据。以下是主要的信息解读: 地图标记: 每个绿色点代表一个路由收集器的位置。路由收集器分布在全球不同的地区,覆盖了五大区域: ARIN(美…...