当前位置: 首页 > news >正文

ES IK分词器插件

前言

ES中默认了许多分词器,但是对中文的支持并不友好,IK分词器是一个专门为中文文本设计的分词工具,它不是ES的内置组件,而是一个需要单独安装和配置的插件。

Ik分词器的下载安装(Winows 版本)

下载地址: https://github.com/medcl/elasticsearch-analysis-ik

在这里插入图片描述

注意:IK分词器插件的版本要和ElasticSearch的版本一致
我的ES版本是7.8.0
在这里插入图片描述
在 ElasticSearch 所在文件夹中创建ik目录,并解压安装包到ik目录下
在这里插入图片描述
启动ES,查看日志观察是否启动成功
在这里插入图片描述

验证测试

可以在kibana中进行验证

在这里插入图片描述
在这里插入图片描述

ik_smart 与 ik_max_word 的异同
首先来看下官方的FAQs
What is the difference between ik_max_word and ik_smart?
ik_max_word: Performs the finest-grained segmentation of the text. For example, it will segment “中华人民共和国国歌” into “中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”, exhaustively generating various possible combinations, suitable for Term Query.
ik_smart: Performs the coarsest-grained segmentation of the text. For example, it will segment “中华人民共和国国歌” into “中华人民共和国,国歌”, suitable for Phrase queries.
Note: ik_smart is not a subset of ik_max_word.
官方这里简单的描述了一下使用用途,即:
ik_smart 比较适合 match_phrase query,而 ik_max_word 更合适 term query。
ik_smart 的分词结果并不是 ik_max_word 的分词结果的子集。

到这里ik创建安装成功!
使用的时候需要在创建索引mapping的时候指定字段的分析器(已经存在的索引,可以先删除后创建)
在这里插入图片描述

相关文章:

ES IK分词器插件

前言 ES中默认了许多分词器,但是对中文的支持并不友好,IK分词器是一个专门为中文文本设计的分词工具,它不是ES的内置组件,而是一个需要单独安装和配置的插件。 Ik分词器的下载安装(Winows 版本) 下载地址:…...

二十三种设计模式-抽象工厂模式

抽象工厂模式(Abstract Factory Pattern)是一种创建型设计模式,它提供了一种方式,用于创建一系列相关或相互依赖的对象,而不需要指定它们具体的类。这种模式主要用于系统需要独立于其产品的创建逻辑时,并且…...

python opencv的orb特征检测(Oriented FAST and Rotated BRIEF)

官方文档:https://docs.opencv.org/4.10.0/d1/d89/tutorial_py_orb.html SIFT/SURF/ORB对比 https://www.bilibili.com/video/BV1Yw411S7hH?spm_id_from333.788.player.switch&vd_source26bb43d70f463acac2b0cce092be2eaa&p80 ORB代码 import numpy a…...

高阶数据结构----布隆过滤器和位图

(一)位图 位图是用来存放某种状态的,因为一个bit上只能存0和1所以一般只有两种状态的情况下适合用位图,所以非常适合判断数据在或者不在,而且位图十分节省空间,很适合于海量数据,且容易存储&…...

VScode使用密钥进行ssh连接服务器方法

如何正常连接ssh的方式可以看我原来那篇文章:Windows上使用VSCode连接远程服务器ssh 1.连接 点击ssh加号,然后关键点在第2步的书写上 2.命令 2的位置写命令: ssh -i "C:\Users\userName\.ssh\id_rsa" usernameIP -p 端口号 端…...

艾体宝产品丨加速开发:Redis 首款 VS Code 扩展上线!

Redis 宣布推出其首款专为 VS Code 设计的 Redis 扩展。这一扩展将 Redis 功能直接整合进您的集成开发环境(IDE),旨在简化您的工作流程,提升工作效率。 我们一直致力于构建强大的开发者生态系统,并在您工作的每一步提…...

应用架构模式

设计模式 设计模式是指根据通用需求来设计解决方案的模板或蓝图,使用设计模式能够更加有效地解决设计过程中的常见问题。设计模式针对不同的问题域有不同的内涵,主要涉及业务、架构、程序设计等问题域,本文主要讨论架构设计模式。 业务设计模…...

注入少量可学习的向量参数: 注入适配器IA3

注入少量可学习的向量参数: 注入适配器IA3 简介:IA3通过学习向量来对激活层加权进行缩放,从而获得更强的性能,同时仅引入相对少量的新参数。它的诞生背景是为了改进LoRA,与LoRA不同的是,IA3直接处理学习向量,而不是学习低秩权重矩阵,这使得可训练参数的数量更少,并且原…...

【C++】B2076 球弹跳高度的计算

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目描述输入格式输出格式输入输出示例 💯两种代码实现及其对比我的代码实现代码分析优点与不足 老师的代码实现代码分析优点与不足 💯两种实现的对…...

【Python】selenium结合js模拟鼠标点击、拦截弹窗、鼠标悬停方法汇总(使用 execute_script 执行点击的方法)

我们在写selenium获取网络信息的时候,有时候我们会受到对方浏览器的监控,对方通过分析用户行为模式,如点击、滚动、停留时间等,网站可以识别出异常行为,进而对Selenium爬虫进行限制。 这里我们可以加入JavaScript的使…...

CatBoost算法详解与PyTorch实现

CatBoost算法详解与PyTorch实现 目录 CatBoost算法详解与PyTorch实现@[TOC](目录)1. CatBoost算法概述1.1 梯度提升树(GBDT)1.2 CatBoost的优势2. CatBoost的核心技术2.1 类别特征处理2.2 对称树结构2.3 有序提升技术2.4 正则化技术3. PyTorch实现CatBoost3.1 环境准备3.2 Py…...

“TypeScript版:数据结构与算法-初识算法“

引言 在算法与编程的广阔世界里,总有一些作品以其独特的魅力和卓越的设计脱颖而出,成为我们学习和研究的典范。今天,我非常荣幸地向大家分享一个令人印象深刻的算法——Hello算法。 Hello算法不仅展现了作者深厚的编程功底,更以…...

mysql中递归的使用 WITH RECURSIVE

MySQL递归查询的基本语法和用法 MySQL 8.0及以上版本支持使用WITH RECURSIVE来进行递归查询。WITH RECURSIVE定义了一个递归的公用表表达式(CTE),它包含两个部分:递归的基础部分(非递归部分)和递归部分。 …...

点击取消按钮,console出来数据更改了,页面视图没有更新

点击取消按钮,console出来数据更改了,页面视图没有更新 前言 实现效果:点击取消按钮,页面视图全部为空, 遇到的问题: 点击取消按钮,console出来数据更改了,SchemaJson 都是默认值啦…...

web框架在什么程度上受限 ?

Web框架提供了开发网站和Web应用的基础结构和工具,但它们也有一些限制。了解这些限制有助于选择合适的框架或决定何时可能需要寻找或开发替代方案。 1、问题背景 提问者计划构建一个 RESTful web 服务,该服务将只使用 JSON/XML 接口,不包含 …...

实践:事件循环

实践:事件循环 代码示例 console.log(1); setTimeout(() > console.log(2), 0); Promise.resolve(3).then(res > console.log(res)); console.log(4);上述的代码的输出结果是什么 1和4肯定优先输出,因为他们会立即方式堆栈的执行上下文中执行&am…...

C++ 设计模式:建造者模式(Builder Pattern)

链接:C 设计模式 链接:C 设计模式 - 工厂方法 链接:C 设计模式 - 抽象工厂 链接:C 设计模式 - 原型模式 建造者模式(Builder Pattern)是一种创建型设计模式,它允许你分步骤创建复杂对象。与其他…...

SQL偏移类窗口函数—— LAG()、LEAD()用法详解

SQL偏移类窗口函数:LAG() 和 LEAD() 用法详解 在 SQL 中,偏移类窗口函数 LAG() 和 LEAD() 用于访问当前行的前几行或后几行的值。 1. LAG() 函数 LAG() 函数返回当前行的前几行的数据。 LAG(Expression, OffSetValue, DefaultVar) OVER (PARTITION BY …...

基于Pytorch和yolov8n手搓安全帽目标检测的全过程

一.背景 还是之前的主题,使用开源软件为公司搭建安全管理平台,从视觉模型识别安全帽开始。主要参考学习了开源项目 https://github.com/jomarkow/Safety-Helmet-Detection,我是从运行、训练、标注倒过来学习的。由于工作原因,抽空…...

[CTF/网络安全] 攻防世界 upload1 解题详析

姿势 在txt中写入一句话木马<?php eval($_POST[qiu]);?> 回显如下&#xff1a; 查看源代码&#xff1a; Array.prototype.contains function (obj) { var i this.length; while (i--) { if (this[i] obj) { return true; } } return false; } function …...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...