如何得到深度学习模型的参数量和计算复杂度
1.准备好网络模型代码
import torch
import torch.nn as nn
import torch.optim as optim# BP_36: 输入2个节点,中间层36个节点,输出25个节点
class BP_36(nn.Module):def __init__(self):super(BP_36, self).__init__()self.fc1 = nn.Linear(2, 36) # 输入2个节点,中间层36个节点self.fc2 = nn.Linear(36, 25) # 输出25个节点def forward(self, x):x = torch.relu(self.fc1(x)) # 使用ReLU激活函数x = self.fc2(x)return x# BP_64: 输入2个节点,中间层64个节点,输出25个节点
class BP_64(nn.Module):def __init__(self):super(BP_64, self).__init__()self.fc1 = nn.Linear(2, 64) # 输入2个节点,中间层64个节点self.fc2 = nn.Linear(64, 25) # 输出25个节点def forward(self, x):x = torch.relu(self.fc1(x)) # 使用ReLU激活函数x = self.fc2(x)return x# Bi-LSTM: 输入2个节点,中间层36个节点,线性层输入72个节点,输出25个节点
class Bi_LSTM(nn.Module):def __init__(self):super(Bi_LSTM, self).__init__()self.lstm = nn.LSTM(input_size=2, hidden_size=36, bidirectional=True, batch_first=True) # 双向LSTMself.fc1 = nn.Linear(72, 25) # LSTM的输出72维,经过线性层后输出25个节点def forward(self, x):# x的形状应该是(batch_size, seq_len, input_size)x, _ = self.lstm(x) # 输出LSTM的结果x = self.fc1(x)return x# Bi-GRU: 输入2个节点,中间层36个节点,线性层输入72个节点,输出25个节点
class Bi_GRU(nn.Module):def __init__(self):super(Bi_GRU, self).__init__()self.gru = nn.GRU(input_size=2, hidden_size=36, bidirectional=True, batch_first=True) # 双向GRUself.fc1 = nn.Linear(72, 25) # GRU的输出72维,经过线性层后输出25个节点def forward(self, x):# x的形状应该是(batch_size, seq_len, input_size)x, _ = self.gru(x) # 输出GRU的结果x = self.fc1(x)return x
2.运行计算参数量和复杂度的脚本
import torch
# from net import BP_36
# from net import BP_64
# from net import Bi_LSTM
from net import Bi_GRUfrom ptflops import get_model_complexity_info
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 统计Transformer模型的参数量和计算复杂度
model_transformer = Bi_GRU()
model_transformer.to(device)
flops_transformer, params_transformer = get_model_complexity_info(model_transformer, (256,2), as_strings=True, print_per_layer_stat=False)
print('模型参数量:' + params_transformer)
print('模型计算复杂度:' + flops_transformer)相关文章:
如何得到深度学习模型的参数量和计算复杂度
1.准备好网络模型代码 import torch import torch.nn as nn import torch.optim as optim# BP_36: 输入2个节点,中间层36个节点,输出25个节点 class BP_36(nn.Module):def __init__(self):super(BP_36, self).__init__()self.fc1 nn.Linear(2, 36) # …...
2025年股指期货每月什么时候交割?
股指期货交割日是指期货合约到期时,买卖双方根据合约规定的指数价值进行现金结算的日期。在中国市场中,股指期货的交割日通常是合约到期月份的第三个星期五。这一规律适用于所有股指期货合约,无论是当月、下月合约,还是季度月合约…...
自从学会Git,感觉打开了一扇新大门
“同事让我用 Git 提交代码,我居然直接把项目文件压缩发过去了……”相信很多初学者都经历过类似的窘境。而当你真正掌握 Git 时,才会发现它就像一本魔法书,轻松解决代码管理的种种难题。 为什么 Git 能成为程序员的标配工具?它究…...
Ansys Discovery 中的网格划分方法:探索模式
本篇博客文章将介绍 Ansys Discovery 中可用于在探索模式下进行分析的网格划分方法。我们将在下一篇博客中介绍 Refine 模式下的网格划分技术。 了解 Discovery Explore 模式下的网格划分 网格划分是将几何模型划分为小单元以模拟系统在不同条件下的行为的过程。这是通过创建…...
关于 AWTK 和 Weston 在旋转屏幕时的资源消耗问题
关于 AWTK 和 Weston 在旋转屏幕时的资源消耗问题,首先需要理解这两者旋转的本质区别及其资源开销。 AWTK的屏幕旋转: AWTK旋转的实现方式: AWTK 是一个用户界面工具包,它通过图形渲染系统处理所有控件和窗口的旋转。当你使用 w…...
grouped.get_group((‘B‘, ‘A‘))选择分组
1. df.groupby([team, df.name.str[0]]) df.groupby([team, df.name.str[0]]) 这一部分代码表示对 DataFrame df 按照 两个条件 进行分组: 按照 team 列(即团队)。按照 name 列的 首字母(df.name.str[0])。 df.name.s…...
HTML——66.单选框
<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>单选框</title></head><body><!--input元素的type属性:(必须要有)--> <!--单选框:(如所住省会,性别选择&…...
Couchbase 和数据湖技术的区别、联系和相关性分析
Couchbase 和数据湖技术(如 Delta Lake、Apache Hudi、Apache Iceberg)分别是两类不同的数据存储与管理系统,但它们也可以在特定场景中结合使用,以下是它们的区别、联系和相关性分析: 区别: 1. 核心用途&a…...
springboot3 性能优化
Spring Boot 3 是基于 Spring Framework 6 的最新版本,支持 Java 17,并引入了多项改进,包括原生镜像支持、性能提升和现代化开发支持。以下是对 Spring Boot 3 应用进行全面优化的详细步骤: 一、开发环境优化 1. 使用最新版本 确保依赖版本为最新: Spring Boot 3.x。 J…...
C++之运算符重载详解篇
1.概念 重载概念: C 允许在同一作用域中的某个函数和运算符指定多个定义,分别称为函数重载和运算符重载。 运算符重载概念:对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型 这里主要介绍…...
深度学习应用工程化中的节能减排最佳实践
文章大纲 简介为什么要在制造业节能减排能耗估算显卡能耗CPU 能耗树莓派能耗加速卡能耗硬件层面的改进边缘端硬件简介树莓派 + 加速卡软件层面的改进检测逻辑的改进算法层面改进深度学习模型训练,推理,量化的优化外网参考参考文献简介 为什么要在制造业节能减排 一、制造业…...
电脑文件msvcp110.d丢失的解决方法
电脑运行故障全解析:从文件丢失到系统报错,打造无忧使用环境 在数字化浪潮中,电脑作为我们工作、学习和娱乐的得力助手,其稳定运行至关重要。然而,在实际使用过程中,我们难免会遇到各种各样的问题…...
xdoj isbn号码
ISBN 号码 问题描述 每一本正式出版的图书都有一个 ISBN 号码与之对应,ISBN 码包括 9 位数字、1 位识别码和 3 位分隔符,其规定格式如"x-xxx-xxxxx-x", 其中符号“-”是分隔符(键盘上的减号),最…...
qt的utc时间转本地时间
代码如下: #include <QCoreApplication> #include <QDateTime> #include <QDebug>int main(int argc...
mariadb变更数据存放目录
1、停止mariadb服务 # systemctl stop maraidb.server 2、创建数据目录 # mkdir /opt/mysql # chown -R mysql:mysql /opt/mysql 3、配置mariadb 3.1 配置文件说明 # cd /etc/mysql/ && ls -l my.cnf为主配置文件,其他的为子配置,同时配置…...
分布式专题(11)之Zookeeper特性与节点数据类型详解
一、Zookeeper数据结构 Zookeeper数据模型与结构与Unix文件系统很类似,整体上可以看做是一棵树,每个节点称做一个ZNode。 Zookeeper的数据模型是层次模型,层次模型常见于文件系统 。层次模型和Key-Value模型是两种主流的数据模型,…...
Java项目实战II基于小程序的驾校管理系统(开发文档+数据库+源码)
目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发,CSDN平台Java领域新星创作者,专注于大学生项目实战开发、讲解和毕业答疑辅导。 一、前言 随着汽车保有量的不断增长,驾驶培训市场日…...
Unity Pico 应用失去焦点后,追踪功能被禁用(原生 UI 界面弹出)
在 Unity 中,如果正在使用新的输入系统,任何触发 OnApplicationFocus(false) 的事件都可能会禁用追踪功能。 负责此功能的组件是附加到主摄像机的 "Tracked Pose Driver (Input System)" 组件。由于非输入系统版本不是新输入系统的一部分&…...
第十四届蓝桥杯Scratch省赛中级组—智能计价器
智能计价器 背景信息: A城市的出租车计价:3公里以内13元,基本单价每公里2.3元(超过3公里的部分,不满1公里按照1公里收费),燃油附加费每运次1元。 例如: 3.2公里的打车费用:132.3…...
AWS S3文件存储工具类
pom依赖 <!--aws-s3--> <dependency><groupId>com.amazonaws</groupId><artifactId>aws-java-sdk-s3</artifactId><version>1.12.95</version></dependency>S3Utils import cn.hutool.core.util.ZipUtil; import com.a…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
