当前位置: 首页 > news >正文

特征工程-特征预处理

1.7 特征工程-特征预处理

学习目标

  • 目标
    • 了解什么是特征预处理
    • 知道归一化和标准化的原理及区别

1 什么是特征预处理

1.1 特征预处理定义

scikit-learn的解释

provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more suitable for the downstream estimators.

翻译过来:通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

在这里插入图片描述

  • 为什么我们要进行归一化/标准化?
    • 特征的单位或者大小相差较大,或者某特征的方差相比其他的特征要大出几个数量级容易影响(支配)目标结果,使得一些算法无法学习到其它的特征
  • 举例:约会对象数据

在这里插入图片描述

我们需要用到一些方法进行无量纲化使不同规格的数据转换到同一规格

1.2 包含内容(数值型数据的无量纲化)

  • 归一化
  • 标准化

1.3 特征预处理API

¨NBSP;

2 归一化

2.1 定义

通过对原始数据进行变换把数据映射到(默认为[0,1])之间

2.2 公式

在这里插入图片描述

作用于每一列,max为一列的最大值,min为一列的最小值,那么X’’为最终结果,mx,mi分别为指定区间值默认mx为1,mi为0

那么怎么理解这个过程呢?我们通过一个例子

在这里插入图片描述

2.3 API

  • sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )
    • MinMaxScalar.fit_transform(X)
      • X:numpy array格式的数据[n_samples,n_features]
    • 返回值:转换后的形状相同的array

2.4 数据计算

我们对以下数据进行运算,在dating.txt中。保存的就是之前的约会对象数据

  • 分析

1、实例化MinMaxScalar

2、通过fit_transform转换

返回结果:

问题:如果数据中异常点较多,会有什么影响?

在这里插入图片描述

2.5 归一化总结

注意最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。

怎么办?

3 标准化

3.1 定义

通过对原始数据进行变换把数据变换到均值为0,标准差为1范围内

3.2 公式

在这里插入图片描述

作用于每一列,mean为平均值,σ为标准差

所以回到刚才异常点的地方,我们再来看看标准化

在这里插入图片描述

  • 对于归一化来说:如果出现异常点,影响了最大值和最小值,那么结果显然会发生改变
  • 对于标准化来说:如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大,从而方差改变较小。

3.3 API

  • sklearn.preprocessing.StandardScaler( )
    • 处理之后每列来说所有数据都聚集在均值0附近标准差差为1
    • StandardScaler.fit_transform(X)
      • X:numpy array格式的数据[n_samples,n_features]
    • 返回值:转换后的形状相同的array

3.4 数据计算

同样对上面的数据进行处理

  • 分析

1、实例化StandardScaler

2、通过fit_transform转换

返回结果:

3.5 标准化总结

在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。

4 总结

  • 什么是特征工程【知道】
    • 定义
      • 通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/dc22bd46c14a45558402b7cb84d972bc.jpeg#pic_center

  • 包含内容:
    • 归一化
    • 标准化
  • 归一化【知道】
    • 定义:
      • 对原始数据进行变换把数据映射到(默认为[0,1])之间
    • api:
      • sklearn.preprocessing.MinMaxScaler (feature_range=(0,1)… )
      • 参数:feature_range -- 自己指定范围,默认0-1
    • 总结:
      • 鲁棒性比较差(容易受到异常点的影响)
      • 只适合传统精确小数据场景(以后不会用你了)
  • 标准化【掌握】
    • 定义:
      • 对原始数据进行变换把数据变换到均值为0,标准差为1范围内
    • api:
      • sklearn.preprocessing.StandardScaler( )
    • 总结:
      • 异常值对我影响小
      • 适合现代嘈杂大数据场景(以后就是用你了)

相关文章:

特征工程-特征预处理

1.7 特征工程-特征预处理 学习目标 目标 了解什么是特征预处理知道归一化和标准化的原理及区别 1 什么是特征预处理 1.1 特征预处理定义 scikit-learn的解释 provides several common utility functions and transformer classes to change raw feature vectors into a represe…...

代码随想录算法训练营day22

代码随想录算法训练营 —day22 文章目录 代码随想录算法训练营前言回溯算法理论基础回溯法解决的问题回溯法模板 一、77. 组合二、216. 组合总和 III三、17. 电话号码的字母组合总结 前言 今天是算法营的第22天,希望自己能够坚持下来! 今日任务&#x…...

2024秋语法分析作业-B(满分25分)

特别注意:第17条产生式改为 17) Stmt → while ( Cond ) Stmt 【问题描述】 本次作业只测试一个含简单变量声明、赋值语句、输出语句、if语句和while语句的文法: 0) CompUnit → Block 1) Block → { BlockItemList } 2) BlockItemList → BlockItem…...

Python爬虫入门(1)

在互联网时代,数据成为了最宝贵的资源之一。Python作为一种功能强大的编程语言,因其简洁的语法和丰富的库支持,成为了编写网络爬虫的首选。本文将带你入门Python爬虫技术,让你能够从互联网上自动获取数据。 什么是爬虫&#xff1…...

鸿蒙1.2:第一个应用

1、create Project,选择Empty Activity 2、配置项目 project name 为项目名称,建议使用驼峰型命名 Bundle name 为项目包名 Save location 为保存位置 Module name 为模块名称,即运行时需要选择的模块名称,见下图 查看模块名称&…...

2024年常用工具

作为本年度高频使用工具,手机端也好,桌面端也好,筛选出来9款产品,这里也分享给关注我的小伙伴 ,希望对你有些帮助,如果你更好的产品推荐,欢迎留言给我。 即刻 产品经理的聚集地,“让…...

【蓝桥杯】走迷宫

题目: 解题思路: 简单的广度优先算法(BFS) BFS 的特性 按层次遍历:BFS 按照节点的距离(边的数量)来逐层访问节点。保证最短路径:对于无权图(所有边权重相同&#xff0…...

【pyqt】(三)designer

designer ui设计 在学习后续的代码之前,我们可以先学习一下designer这款工具,在安装软件的时候我们有提到过,其具体位置在虚拟环境根目录下的\Lib\site-packages\PySide6文件夹中。对于新手而言,使用这种可视化的工具可以帮助我们…...

【Go学习】-01-3-函数 结构体 接口 IO

【Go学习】-01-3-函数 结构体 接口 IO 1 函数1.1 函数概述1.1.1 函数做为参数1.1.2 函数返回值 1.2 参数1.3 匿名函数1.4 闭包1.5 延迟调用1.6 异常处理 2 结构体2.1 实例化2.2 匿名结构体2.3 匿名字段 3 类方法3.1 接收器3.2 类方法练习:二维矢量模拟玩家移动3.3 给…...

昆仑万维大数据面试题及参考答案

请介绍一下 Flume 组件。 Flume 是一个分布式、可靠、高可用的海量日志采集、聚合和传输的系统。 从架构层面来看,它主要包含以下几个关键部分。首先是 Source,它是数据的收集端,能够接收多种不同来源的数据。比如,它可以从各种服务器的日志文件中读取数据,像 Web 服务器产…...

20250103在Ubuntu20.04.5的Android Studio 2024.2.1.12中跑通Hello World

20250103在Ubuntu20.04.5的Android Studio 2024.2.1.12中跑通Hello World 2025/1/3 14:06 百度:android studio helloworld android studio hello world kotlin helloword kotlin 串口 no run configurations added android studio no run configurations added 1、…...

Hack The Box-Starting Point系列Three

答案 How many TCP ports are open?(靶机开了几个TCP端口) 2What is the domain of the email address provided in the “Contact” section of the website?(网站的“CONTACT”部分提供的电子邮件地址的域是什么?&#xff09…...

【Python其他生成随机字符串的方法】

在Python中,除了之前提到的方法外,确实还存在其他几种生成随机字符串的途径。以下是对这些方法的详细归纳: 方法一:使用random.randint结合ASCII码生成 你可以利用random.randint函数生成指定范围内的随机整数,这些整…...

redis7基础篇2 redis的主从模式1

目录 一 主从模式 1.1 主从复制的作用 1.2 配置常用命令 1.3 主从复制常见问题 1.4 主从复制的缺点 1.5 redis主从复制原理 二 redis主从复制的搭建流程 2.1 注意事项 2.2 redis的主从复制架构图 2.3 以6379.conf配置文件配置为例 2.4 以6380.conf配置文件配置为例 …...

Springboot - Web

Spring Boot 是一个用于简化 Spring 应用程序配置和部署的框架。它提供了一种快速开发的方式,通过默认配置、自动化配置等特性,使得开发者能够更快捷地构建和部署基于 Spring 的应用。 Spring Boot Web 是 Spring Boot 的一个子模块,它专注于…...

【C】​动态内存管理

所谓动态内存管理,就是使得内存可以动态开辟,想使用的时候就开辟空间,使用完之后可以销毁,将内存的使用权还给操作系统,那么动态开辟内存有什么用呢? 假设有这么一种情况,你在一家公司中工作&am…...

lec5-传输层原理与技术

lec5-传输层原理与技术 1. 传输层概述 1.1. 关键职责 flow control,流量控制reliability,可靠性 1.2. TCP与UDP对比 面向连接 / 不能连接对数据校验 / 不校验数据丢失重传 / 不会重传有确认机制 / 没有确认滑动窗口流量控制 / 不会流量控制 1.3. 关…...

【C语言】_指针运算

目录 1. 指针-整数 2. 指针-指针 2.1 指针-指针含义 2.2 指针-指针运算应用:实现my_strlen函数 3. 指针的关系运算(大小比较) 1. 指针-整数 联系关于指针变量类型关于指针类型和指针-整数相关知识: 原文链接如下&#xff1…...

“AI智慧教学系统:开启个性化教育新时代

大家好,我是老王,一个在产品圈摸爬滚打多年的资深产品经理。今天,我想和大家聊聊一个最近特别火的概念——AI智慧教学系统。这东西听起来好像很高大上,但其实和我们每个人都息息相关,因为它关系到我们下一代的教育。 一…...

商用车自动驾驶,迎来大规模量产「临界点」?

商用车自动驾驶,正迎来新的行业拐点。 今年初,交通部公开发布AEB系统运营车辆标配征求意见稿,首次将法规限制条件全面放开,有望推动商用车AEB全面标配,为开放场景的商用车智能驾驶市场加了一把火。 另外,…...

线程同步:确保多线程程序的安全与高效!

全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...