深入理解并发原子性、可见性、有序性与JMM内存模型
1. 并发三大特性
并发编程Bug的源头:原子性、可见性和有序性问题
1.1 原子性
一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行。在 Java 中,对基本数据类型的变量的读取和赋值操作是原子性操作(64位处理器)。不采取任何的原子性保障措施的自增操作并不是原子性的,比如i++操作。
原子性案例分析
下面例子模拟多线程累加操作
public class AtomicTest {private static int counter = 0;public static void main(String[] args) {for (int i = 0; i < 10; i++) {Thread thread = new Thread(() -> {for (int j = 0; j < 10000; j++) {counter++;}});thread.start();}try {Thread.sleep(3000);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(counter);}}
执行结果不确定, 与预期结果不符合,存在线程安全问题
如何保证原子性
- 通过 synchronized 关键字保证原子性
- 通过 Lock锁保证原子性
- 通过 CAS保证原子性
思考:在 32 位的机器上对 long 型变量进行加减操作是否存在并发隐患?
不能保证原子性的,可以使用volatile修饰。
https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.7
1.2 可见性
可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。
可见性案例分析
下面是模拟两个线程对共享变量操作的例子,用来分析线程间的可见性问题
public class VisibilityTest {private boolean flag = true;public void refresh() {// 希望结束数据加载工作flag = false;System.out.println(Thread.currentThread().getName() + "修改flag:"+flag);}public void load() {System.out.println(Thread.currentThread().getName() + "开始执行.....");while (flag) {//TODO 业务逻辑:加载数据}System.out.println(Thread.currentThread().getName() + "数据加载完成,跳出循环");}public static void main(String[] args) throws InterruptedException {VisibilityTest test = new VisibilityTest();// 线程threadA模拟数据加载场景Thread threadA = new Thread(() -> test.load(), "threadA");threadA.start();// 让threadA先执行一会儿后再启动线程BThread.sleep(1000);// 线程threadB通过修改flag控制threadA的执行时间,数据加载可以结束了Thread threadB = new Thread(() -> test.refresh(), "threadB");threadB.start();}}
运行结果:threadA没有跳出循环,也就是说threadB对共享变量flag的更新操作对threadA不可见,存在可见性问题。
思考:上面例子中为什么多线程对共享变量的操作存在可见性问题?
JMM
如何保证可见性
- 通过 volatile 关键字保证可见性
- 通过 内存屏障保证可见性
- 通过 synchronized 关键字保证可见性
- 通过 Lock锁保证可见性
1.3 有序性
即程序执行的顺序按照代码的先后顺序执行。为了提升性能,编译器和处理器常常会对指令做重排序,所以存在有序性问题。
有序性案例分析
思考:下面的Java程序中x和y的最终结果是什么?
public class ReOrderTest {private static int x = 0, y = 0;private static int a = 0, b = 0;public static void main(String[] args) throws InterruptedException {int i=0;while (true) {i++;x = 0;y = 0;a = 0;b = 0;/*** x,y的值是多少:*/Thread thread1 = new Thread(new Runnable() {@Overridepublic void run() {//用于调整两个线程的执行顺序shortWait(20000);a = 1;x = b;}});Thread thread2 = new Thread(new Runnable() {@Overridepublic void run() {b = 1;y = a;}});thread1.start();thread2.start();thread1.join();thread2.join();System.out.println("第" + i + "次(" + x + "," + y + ")");if (x==0&&y==0){break;}}}public static void shortWait(long interval){long start = System.nanoTime();long end;do{end = System.nanoTime();}while(start + interval >= end);}}
执行结果:x,y出现了0,0的结果,程序终止。出现这种结果有可能是重排序导致的
如何保证有序性
- 通过 volatile 关键字保证有序性
- 通过 内存屏障保证有序性
- 通过 synchronized关键字保证有序性
- 通过Lock锁保证有序性
2. Java内存模型详解
在并发编程中,需要处理的两个关键问题:
1)多线程之间如何通信(线程之间以何种机制来交换数据)。
2)多线程之间如何同步 (控制不同线程间操作发生的相对顺序)。
线程之间常用的通信机制有两种:共享内存和消息传递,Java采用的是共享内存模型。
2.1 Java内存模型的抽象结构
Java线程之间的通信由Java内存模型(Java Memory Model,简称JMM)控制,JMM决定一个线程对共享变量的写入何时对另一个线程可见。
从抽象的角度来看,JMM定义了线程和主内存之间的抽象关系:线程之间的共享变量存储在主内存中,每个线程都有一个私有的本地内存,本地内存中存储了共享变量的副本。本地内存是JMM的一个抽象概念,并不真实存在,它涵盖了缓存,写缓冲区,寄存器以及其他的硬件和编译器优化。
根据JMM的规定,线程对共享变量的所有操作都必须在自己的本地内存中进行,不能直接从主内存中读取。
从上图看,线程A和线程B之间要通信的话,必须经历以下两个步骤:
1)线程A把本地内存A中更新过的共享变量刷新到主内存中
2)线程B到主内存中去读取线程A之前已更新过的共享变量
所以,线程A无法直接访问线程B的工作内存,线程间通信必须经过主内存。JMM通过控制主内存与每个线程的本地内存之间的交互,来为Java程序提供内存可见性的保证。
温馨提醒: 面试期间,有时候大家会把Java内存模型误解为Java内存结构,然后答到堆,栈,GC垃圾回收,最后和面试官想问的问题相差甚远。实际上一般问到Java内存模型都是想问多线程,Java并发相关的问题。
主内存与工作内存交互协议
关于主内存与工作内存之间的具体交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步到主内存之间的实现细节,Java内存模型定义了以下八种原子操作来完成:
- lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态。
- unlock(解锁):作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
- read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
- load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
- use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
- assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
- store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。
- write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。
Java内存模型还规定了在执行上述八种基本操作时,必须满足如下规则:
- 如果要把一个变量从主内存中复制到工作内存,就需要按顺序地执行read和load操作, 如果把变量从工作内存中同步回主内存中,就要按顺序地执行store和write操作。但Java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行。
- 不允许read和load、store和write操作之一单独出现
- 不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中。
- 不允许一个线程无原因地(没有发生过任何assign操作)把数据从工作内存同步回主内存中。
- 一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作。
- 一个变量在同一时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。lock和unlock必须成对出现
- 如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量前需要重新执行load或assign操作初始化变量的值
- 如果一个变量事先没有被lock操作锁定,则不允许对它执行unlock操作;也不允许去unlock一个被其他线程锁定的变量。
- 对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)。
可见性案例深入分析
本节课重点:结合可见性案例理解主内存和工作内存的交互过程
Java中可见性底层有两种实现:
1.内存屏障 (synchronized Thread.sleep(10) volatile)
lock addl $0x0,(%rsp)
2.cup上下文切换 (Thread.yield() Thread.sleep(0) )
2.2 锁的内存语义
锁获取和释放的内存语义:
- 当线程获取锁时,JMM会把该线程对应的本地内存置为无效。
- 当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。
synchronized关键字的作用是确保多个线程访问共享资源时的互斥性和可见性。在获取锁之前,线程会将共享变量的最新值从主内存中读取到线程本地的缓存中,释放锁时会将修改后的共享变量的值刷新到主内存中,以保证可见性。
2.3 volatile内存语义
volatile写的内存语义:
当写一个volatile变量时,JMM会把该线程对应的本地内存中的共享变量值刷新到主内存。
volatile读的内存语义:
当读一个volatile变量时,JMM会把该线程对应的本地内存置为无效,线程接下来将从主内存中读取共享变量。
volatile内存语义的实现原理
JMM属于语言级的内存模型,它确保在不同的编译器和不同的处理器平台之上,通过禁止特定类型的编译器重排序和处理器重排序,为程序员提供一致的内存可见性保证。
volatile禁止重排序规则
为了实现volatile的内存语义,JMM会限制编译器重排序,JMM针对编译器制定了volatile重排序规则表。
由表中可以看出,volatile禁止重排序场景:
1.当第二个操作是volatile写时,不管第一个操作是什么,都不能重排序。
2.当第一个操作是volatile读时,不管第二个操作是什么,都不能重排序。
3.当第一个操作是volatile写,第二个操作是volatile读时,不能重排序。
有序性案例深入分析
本节课重点:结合课上例子深入理解volatile禁止重排序的规则
案例:在Java多线程程序中,有时候需要采用延迟初始化来降低初始化类和创建对象的开销。双重检查锁定是常用的延迟初始化技术,但它有一个错误的用法。
public class Singleton {private static Singleton singleton;private Singleton() {}/*** 双重检查锁定(Double-checked Locking)实现单例对象的延迟初始化** @return*/public static Singleton getSingleton() {if (singleton == null) {synchronized (Singleton.class) {if (singleton == null) {singleton = new Singleton();}}}return singleton;}}
正确的用法应该是使用volatile修饰singleton
private volatile static Singleton singleton;
原因就在于singleton = new Singleton()这行代码,创建了一个对象。这行代码可以分解为三行伪代码
memory = allocate(); //1. 分配对象内存空间ctorInstance(memory); //2.初始化对象instance = memory; //3.设置instance指向刚刚分配的内存地址
上面2和3之间可能会被重排序,重排序之后的执行时序如下:
memory = allocate(); //1. 分配对象内存空间instance = memory; //3.设置instance指向刚刚分配的内存地址//注意,此时对象还没有被初始化ctorInstance(memory); //2.初始化对象
JMM内存屏障插入策略
为了实现volatile的内存语义,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。JMM内存屏障插入策略:
1. 在每个volatile写操作的前面插入一个StoreStore屏障
2. 在每个volatile写操作的后面插入一个StoreLoad屏障
3. 在每个volatile读操作的后面插入一个LoadLoad屏障
4. 在每个volatile读操作的后面插入一个LoadStore屏障
上述内存屏障的插入策略非常保守,但它可以保证在任意处理器平台,任意程序中都能得到正确的volatile内存语义。
由于不同的处理器有不同的松紧度的处理器内存模型,内存屏障的插入还可以根据具体的处理器内存模型继续优化。以x86处理器为例,x86不会对读-读、读-写、写-写操作做重排序,因此在x86处理器中会省略这3类操作对应的内存屏障,仅会对写-读操作做重排序。
不同硬件实现内存屏障的方式不同,Java内存模型屏蔽了这种底层硬件平台的差异,由JVM来为不同的平台生成相应的机器码。
拓展:处理器级别内存屏障指令
拿X86处理器来说,有几种主要的内存屏障:
1. lfence,是一种Load Barrier 读屏障
2. sfence, 是一种Store Barrier 写屏障
3. mfence, 是一种全能型的屏障,具备lfence和sfence的能力
4. Lock前缀,Lock不是一种内存屏障,但是它能完成类似内存屏障的功能。Lock会对CPU总线和高速缓存加锁,可以理解为CPU指令级的一种锁。
内存屏障有两个能力:
1. 阻止屏障两边的指令重排序
2. 刷新处理器缓存
Hotspots源码中内存屏障的实现
orderAccess_linux_x86.inline.hpp
inline void OrderAccess::storeload() { fence(); }inline void OrderAccess::fence() {if (os::is_MP()) {// always use locked addl since mfence is sometimes expensive#ifdef AMD64__asm__ volatile ("lock; addl $0,0(%%rsp)" : : : "cc", "memory");#else__asm__ volatile ("lock; addl $0,0(%%esp)" : : : "cc", "memory");#endif}}
x86处理器中利用lock前缀指令实现类似内存屏障的效果。
lock前缀指令的作用
1. 确保后续指令执行的原子性。在Pentium及之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其它处理器暂时无法通过总线访问内存,很显然,这个开销很大。在新的处理器中,Intel使用缓存锁定来保证指令执行的原子性,缓存锁定将大大降低lock前缀指令的执行开销。
2. LOCK前缀指令具有类似于内存屏障的功能,禁止该指令与前面和后面的读写指令重排序。
3. LOCK前缀指令会等待它之前所有的指令完成、并且所有缓冲的写操作写回内存(也就是将store buffer中的内容写入内存)之后才开始执行,并且根据缓存一致性协议,刷新store buffer的操作会导致其他cache中的副本失效
2.4 happens-before
happens-before的定义
JSR-133使用happens-before的概念来指定两个操作之间的执行顺序。由于这两个操作可以在一个线程之内,也可以在不同的线程之内。因此,JMM可以通过happens-before关系向程序员提供跨线程的内存可见性保证。
JSR-133规范对happens-before关系的定义如下:
1)如果一个操作happens-before 另一个操作,那么第一个操作的执行结果将对第二个操作可见,而且第一个操作的执行顺序排在第二个操作之前。 这是JMM对程序员的承诺, 注意,这只是JMM向程序员做出的保证。
2)两个操作之间存在happens-before关系,并不意味着Java平台的具体实现必须要按照happens-before关系指定的顺序来执行。如果重排序之后的执行结果,与按happens-before关系来执行的结果一致,那么这种排序并不非法,也就是说,JMM允许这种排序。这是JMM对编译器和处理器重排序的约束原则
JMM遵循一个基本原则:只要不改变程序的执行结果,编译器和处理器怎么优化都行。
- as-if-serial语义保证单线程内程序的执行结果不被改变
- happens-before关系保证正确同步的多线程程序的执行结果不被改变。
这么做的目的是为了在不改变程序执行结果的前提下,尽可能地提高程序执行的并行度。
happens-before规则
JSR-133规范定义了如下happens-before规则:
1)程序顺序规则:一个线程中的每个操作,happens-before于该线程中的任意后续操作;
2)锁定规则:对一个锁的解锁,happens-before于随后对这个锁的加锁;
3)volatile变量规则:对一个volatile变量的写操作,happens-before于任意后续对这个volatile变量的读操作;
4)传递规则:如果A happens-before B,并且B happens-before C,则A happens-before C;
5)线程启动规则:如果线程A调用线程B的start()方法来启动线程B,则start()操作happens-before于线程B中的任意操作;
6)线程中断规则:对线程interrupt()方法的调用happens-before于被中断线程的代码检测到中断事件的发生;
7)线程终结规则:如果线程A执行操作ThreadB.join()并成功返回,那么线程B中的任意操作happens-before于线程A从ThreadB.join()操作成功返回;
8)对象终结规则:一个对象的初始化完成happens-before于它的finalize()方法的开始。
2.5 总结
Java中的volatile关键字可以保证多线程操作共享变量的可见性以及禁止指令重排序,synchronized关键字不仅保证可见性,同时也保证了原子性(互斥性)。在更底层,JMM通过内存屏障来实现内存的可见性以及禁止重排序。为了程序员的方便理解,提出了happens-before,它更加的简单易懂,从而避免了程序员为了理解内存可见性而去学习复杂的重排序规则以及这些规则的具体实现方法。
相关文章:

深入理解并发原子性、可见性、有序性与JMM内存模型
1. 并发三大特性 并发编程Bug的源头:原子性、可见性和有序性问题 1.1 原子性 一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行。在 Java 中,对基本数据类型的变量的读取和赋值操作是原子性操作&…...

电商项目-数据同步解决方案(四)商品下架同步更新ES索引库数据
商品下架索引库删除数据 一、 需求分析和业务逻辑 商品下架后将商品从索引库中移除。 主要应用技术有: 消息队列-RabbitMQ ,分布式搜索引擎-ElasticSearch,Eureka,Canal,Feign远程调用 (1)在…...

vue学习第一阶段
vue 什么是Vue? 概念:Vue是一个构建用户页面的渐进式框架 Vue的两种使用方式 Vue的核心开发 场景: 局部 {\color{red}局部} 局部模块改造Vue核心包& Vue插件 工程化开发场景: 整站 {\color{red}整站} 整站开发Vue2官网 https://v2.cn.vuejs.org/ 资料存放地址 D:\Baidu…...

React虚拟DOM:理解和应用
写在前面 在现代前端开发中,React 是一个非常流行的 JavaScript 库,用于构建用户界面。它引入了一个名为“虚拟 DOM”(Virtual DOM)的概念,这个概念对于 React 的高效性能和易用性至关重要。本文将深入探讨 React Vir…...

用python编写一个放烟花的小程序
import pygame import random # 代码解释及使用说明: # 首先,导入 pygame 和 random 库。pygame 用于创建游戏窗口和图形绘制,random 用于生成随机数。 # 初始化 pygame,并设置屏幕尺寸为 800x600 像素,设置窗口标题为…...

Git 仓库与文件管理笔记
Git 的三种仓库概念 本地仓库 (Local Repository) 位于本地 .git 文件夹中通过 git init 或 git clone 创建存储完整的项目历史和分支信息 远程仓库 (Remote Repository) 位于 GitHub、GitLab 等平台服务器使用 git remote -v 查看所有远程仓库默认远程仓库名通常为 origin 工…...

2024 年 docker 提示index.docker.io
发现 docker 提示以下错误: Error response from daemon: Get "https://index.docker.io/v1/search?qnginx&n25": dialing index.docker.io:443 container via direct connection because has no HTTPS proxy: connecting to index.docker.io:443:…...

TCP粘/拆包----自定义消息协议
今天是2024年12月31日,今年的最后一天,希望所有的努力在新的一年会有回报。❀ 无路可退,放弃很难,坚持很酷 TCP传输 是一种面向二进制的,流的传输。在传输过程中最大的问题是消息之间的边界不明确。而在服务端主要的…...

Modbus知识详解
Modbus知识详解 ## 1.什么是Modbus?**顾名思义**,它是一个Bus(总线),即总线协议。比如串口协议、IIC协议、SPI都是通信协议。你接触到这种协议,相信你所处的行业是工业电子方面或者你的产品用于工业。好了,…...

Java-创建一个结合CompletableFuture和自定义功能的工具类
1.重试机制:当异步任务失败时自动重试。 2.超时重试:在指定时间内未完成的任务进行重试。 3.批量处理:将多个任务批量执行并收集结果。 4.日志记录:为每个异步任务添加日志记录,便于调试和监控。 5.自定义线程池:允许用户传入自定义的线程池配置。 import java.util…...

【MATLAB第111期】基于MATLAB的sobol全局敏感性分析方法二阶指数计算
【MATLAB第111期】基于MATLAB的sobol全局敏感性分析方法二阶指数计算 一、简介 在MATLAB中计算Sobol二阶效应指数通常涉及到全局敏感性分析(Global Sensitivity Analysis, GSA),其中Sobol方法是一种流行的技术,用于评估模型输入…...

C语言-sprintf
sprintf是一个在C语言中用于字符串格式化的函数,其功能是将格式化的数据写入某个字符串中。该函数定义stdio.h在头文件中,原型为: int sprintf(char *string, const char *format, ...); 函数参数 string:指向一个字符数组的指针&#…...

APM 3.0.2 | 聚合B站、油管和MF的音乐播放器,支持歌词匹配
APM(Azusa-Player-Mobile)是一款基于B站的第三方音频播放器,现已扩展支持YouTube Music、YouTube、本地音乐、AList和MusicFree等平台。它不仅提供视频作为音频播放,还具备排行榜、分区动态等功能。用户可以通过添加Alist地址接入…...

Mono 和 IL2Cpp的区别
Mono特征: 标准项目中有Assembly-CSharp.dll , 但在更复杂的项目或特定配置中,可能会有其他.dll或结构变更 在游戏的数据目录下看到一系列的.dll文件,这些文件的语言一般为中间语言 CE附加 , 查看是否有Mono.dll相关模块 目录有MonoBleedingEdge文件夹 IL2Cpp 标准项目应该…...

力扣第389题—找不同
class Solution:def findTheDifference(self, s: str, t: str) -> str:# 对字符串 s 和 t 进行排序a sorted(s)b sorted(t)# 比较排序后的两个列表for i in range(len(a)):if a[i] ! b[i]:return b[i]# 如果前面的比较没有找到差异,那么差异字符在 t 的最后一个…...

我的桌面 1.9.75 | 个性化定制手机桌面,丰富的小组件和主题
我的桌面iScreen是一款万能桌面小组件APP,提供各种高颜值桌面主题与创意小组件自由组合。支持X面板、照片、待办清单、时钟、日历等实用有趣的小组件。拥有超过500种小组件供选择,包括灵动面板、滚动相册等,搭配300多种精美主题和高清壁纸&am…...

【Java项目】基于SpringBoot的【垃圾分类系统】
【Java项目】基于SpringBoot的【垃圾分类系统】 技术简介:本系统使用采用B/S架构、Spring Boot框架、MYSQL数据库进行开发设计。 系统简介:使用者分为管理员和用户、垃圾分类管理员,实现功能包括管理员:首页、个人中心、用户管理、…...

生成埃里克卡特曼人工智能语音听起来像他或配音视频
您是《南方公园》和迷人角色埃里克卡特曼的忠实粉丝吗?您是否渴望获得标志性的埃里克卡特曼 AI 语音,将他的动画魅力融入到您的数字内容、游戏或流媒体体验中?如果答案是肯定的,那么您来对地方了! 在本文中࿰…...

C语言中的va_list
目录 1. 可变参数函数(Variadic Function) 2. va_list 及相关宏 3. va_list 的用途 4. 与 printf、vsnprintf 等函数的关系 5. 在实际场景中的示例 5.1 API_SendAtCommandParam 函数 5.2 va_arg 直接取参数 6. 常见问题 7. 结论 在 C 语言中&am…...

idea无法安装插件
目录 修改工具配置 本地安装 无法下载很多时候就是延迟太高导致的,我们先打开插件官网看一下 Python - IntelliJ IDEs Plugin | Marketplace 修改工具配置 1、配置代理(点击 setting-点击 plugins-在点击 http proxy Settings) 输入&…...

智汇厦门:苏哒智能携其智能化产品亮相文心中国行现场
2025年1月2日,文心中国行再次踏足美丽的鹭岛厦门。 本次的文心中国行活动不仅有来自政府、高校及企业的精英专家将齐聚一堂,分享AI与大模型的最新研究成果,还正式揭牌百度飞桨(厦门)人工智能产业赋能中心,…...

C++函数模板的定义为何要和调用点放在一起
在C中,模板的声明最好和调用放在一起,或者确保编译器在进行模板实例化时能看到模板完整的定义,主要有以下几方面原因: 一、模板实例化机制的需求 编译时实例化特点 C模板是在编译阶段根据实际使用时传入的类型参数进行实例化&am…...

Nginx - 整合lua 实现对POST请求的参数拦截校验(不使用Openresty)
文章目录 概述步骤 1: 安装 Nginx 和 Lua 模块步骤 2: 创建 Lua 脚本用于参数校验步骤 3: 配置 Nginx 使用 Lua 脚本写法二: 状态码写法三 : 返回自定义JSON复杂的正则校验 步骤 4: 测试和验证ngx.HTTP_* 枚举值 概述 一个不使用 OpenResty 的 Nginx 集…...

互联网直播点播平台EasyDSS无人机视频推拉流技术实现工地远程监控巡检直播
在建筑行业,施工现场的安全管理和实时监控一直是项目管理中的重点。随着技术的进步,无人机工地直播技术成为了一种新兴的解决方案,它不仅能够提高施工透明度,还能够加强现场安全管理。EasyDSS作为一种先进的流媒体技术平台&#x…...

Unity3D 基于GraphView实现的节点编辑器框架详解
前言 在Unity3D游戏开发中,节点编辑器是一种强大的工具,它允许开发者以可视化的方式创建和编辑复杂的逻辑和流程。Unity提供了一个强大的UI工具包——GraphView,它使得创建自定义节点编辑器变得相对简单。本文将详细介绍如何使用GraphView实…...

【C++】开源:Armadillo数值计算库配置与使用
😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍Armadillo数值计算库配置与使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下次更新不迷路🥞 文章目录 :smirk:1. Armadillo介绍:blush:2. 环境配置:s…...

HackMyVM-Airbind靶机的测试报告
目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、信息搜集 2、Getshell 3、提权 使用ipv6绕过iptables 四、结论 一、测试环境 1、系统环境 渗透机:kali2021.1(192.168.101.127) 靶 机:debian(192.168.101.11…...

C语言----函数
目录 1. 定义: 2.三要素 3.格式 4. 函数声明 5. 函数调用 6.函数传参 6.1. 值传递 6.2. 地址传递 6.3. 数组传递 string函数族 1.strcpy 2. strlen 3. strcat 4.strcmp 递归函数 1. 定义: 一个完成特定功能的代码模块 2.三要素 功能、…...

MySQL图形化界面工具--DataGrip
之前介绍了在命令行进行操作,但是不够直观,本次介绍图形化界面工具–DataGrip。 安装DataGrip 官网链接:官网下载链接 常规的软件安装流程。 参考链接:DataGrip安装 使用DataGrip 添加数据源: 第一次使用最下面会…...

PyTorch AMP 混合精度中grad_scaler.py的scale函数解析
PyTorch AMP 混合精度中的 scale 函数解析 混合精度训练(AMP, Automatic Mixed Precision)是深度学习中常用的技术,用于提升训练效率并减少显存占用。在 PyTorch 的 AMP 模块中,GradScaler 类负责动态调整和管理损失缩放因子&…...