当前位置: 首页 > news >正文

解析 World Football Cup 问题及其 Python 实现

问题描述

本文讨论一道关于足球锦标赛排名规则的问题,来自 Berland 足球协会对世界足球规则的调整。题目要求对给定的比赛数据进行计算,并输出能进入淘汰赛阶段的球队列表。以下是规则详细描述。

题目规则

输入格式

  1. 第一行包含一个整数 n(1 ≤ n ≤ 50),表示参加比赛的队伍数量(保证为偶数)。
  2. 接下来的 n 行,每行包含一个队伍的名字。名字由大小写英文字母组成,长度不超过 30 个字符。
  3. 接下来的 n * (n - 1) / 2 行,描述了比赛结果,格式为:
    team1-team2 score1:score2
    
    • team1team2 是两个队伍的名字。
    • score1score2 分别是两队的进球数。

规则说明

  1. 获胜队伍得 3 分,平局双方各得 1 分,失败队伍得 0 分。
  2. 排名规则:
    • 积分高者优先。
    • 如果积分相同,则净胜球(score1 - score2)高者优先。
    • 如果净胜球也相同,则总进球数高者优先。
  3. 最终取前 n / 2 名进入淘汰赛阶段,并按字典序输出。

输出格式

  • 输出 n / 2 行,表示进入淘汰赛的球队,按字典序排列。

示例
输入:
4
A
B
C
D
A-B 1:1
A-C 2:2
A-D 1:0
B-C 1:0
B-D 0:3
C-D 0:3
输出:
A
D
输入:
2
a
A
a-A 2:1
输出:
a

Python 实现代码

以下是对该问题的 Python 实现,程序清晰地遵循题目规则,确保排名计算和输出正确。

from collections import defaultdictclass Team:def __init__(self, name):self.name = nameself.pts = 0  # 积分self.diff = 0  # 净胜球self.scored = 0  # 总进球数def main():# 输入处理n = int(input().strip())teams = {}for _ in range(n):name = input().strip()teams[name] = Team(name)for _ in range(n * (n - 1) // 2):match = input().strip()names, scores = match.split()team1, team2 = names.split('-')score1, score2 = map(int, scores.split(':'))# 更新统计信息teams[team1].scored += score1teams[team2].scored += score2teams[team1].diff += score1 - score2teams[team2].diff += score2 - score1if score1 > score2:teams[team1].pts += 3elif score1 < score2:teams[team2].pts += 3else:teams[team1].pts += 1teams[team2].pts += 1# 排名规则sorted_teams = sorted(teams.values(),key=lambda x: (x.pts, x.diff, x.scored),reverse=True)# 取前 n / 2 并按字典序排序top_teams = sorted([team.name for team in sorted_teams[:n // 2]])# 输出结果for name in top_teams:print(name)if __name__ == "__main__":main()

代码解析
  1. 数据结构

    • 使用 Team 类表示每支球队,包括球队名称、积分、净胜球和总进球数。
    • 使用字典 teams 存储所有球队的统计数据。
  2. 比赛数据处理

    • 按输入格式解析每场比赛的比分,更新对应球队的统计信息。
  3. 排序规则

    • 使用 Python 的 sorted 方法,根据积分、净胜球和总进球数进行多级排序。
    • 对排名靠前的球队再按字典序排序。
  4. 输出

    • 打印进入淘汰赛的球队名称,每行一支球队。

测试与结果
测试用例 1:
输入:
4
A
B
C
D
A-B 1:1
A-C 2:2
A-D 1:0
B-C 1:0
B-D 0:3
C-D 0:3输出:
A
D
测试用例 2:
输入:
2
a
A
a-A 2:1输出:
a

算法复杂度
  • 时间复杂度
    • 读取和处理比赛结果:O(n²),其中 n 为球队数量。
    • 排序:O(n log n)。
  • 空间复杂度
    • 存储球队信息:O(n)。

总结

本文通过 Python 实现了足球锦标赛排名问题,重点在于对比赛规则的理解和对排名逻辑的实现。程序具有良好的扩展性,可以适应更复杂的比赛数据。如果你对本文感兴趣,欢迎在评论区交流!

相关文章:

解析 World Football Cup 问题及其 Python 实现

问题描述 本文讨论一道关于足球锦标赛排名规则的问题&#xff0c;来自 Berland 足球协会对世界足球规则的调整。题目要求对给定的比赛数据进行计算&#xff0c;并输出能进入淘汰赛阶段的球队列表。以下是规则详细描述。 题目规则 输入格式&#xff1a; 第一行包含一个整数 …...

9.系统学习-卷积神经网络

9.系统学习-卷积神经网络 简介输入层卷积层感受野池化层全连接层代码实现 简介 卷积神经网络是一种用来处理局部和整体相关性的计算网络结构&#xff0c;被应用在图像识别、自然语言处理甚至是语音识别领域&#xff0c;因为图像数据具有显著的局部与整体关系&#xff0c;其在图…...

基于FPGA的出租车里程时间计费器

基于FPGA的出租车里程时间计费器 功能描述一、系统框图二、verilog代码里程增加模块时间增加模块计算价格模块上板视频演示 总结 功能描述 &#xff08;1&#xff09;&#xff1b;里程计费功能&#xff1a;3公里以内起步价8元&#xff0c;超过3公里后每公里2元&#xff0c;其中…...

三甲医院等级评审八维数据分析应用(五)--数据集成与共享篇

一、引言 1.1 研究背景与意义 随着医疗卫生体制改革的不断深化以及信息技术的飞速发展,三甲医院评审作为衡量医院综合实力与服务水平的重要标准,对数据集成与共享提出了更为严苛的要求。在传统医疗模式下,医院内部各业务系统往往各自为政,形成诸多“信息孤岛”,使得数据…...

VUE条件树查询 自定义条件节点

之前实现过的简单的条件树功能如下图&#xff1a; 经过最新客户需求确认&#xff0c;上述条件树还需要再次改造&#xff0c;以满足正常需要&#xff01; 最新暴改后的功能如下红框所示&#xff1a; 页面功能 主页面逻辑代码&#xff1a; <template><div class"…...

什么是打流,怎么用iperf3打流

什么是打流 在网络安全和黑灰产领域&#xff0c;“打流”具有不同的含义&#xff0c;常用于形容通过技术手段制造流量假象或发起流量攻击。 流量攻击&#xff08;DDoS&#xff09;中的“打流”&#xff1a; “打流”指向目标服务器或网络发起 大规模的数据请求&#xff0c;造…...

使用MySQL APT源在Linux上安装MySQL

全新安装MySQL的步骤 以下说明假定您的系统上尚未安装任何版本的MySQL&#xff08;无论是由Oracle还是其他方分发&#xff09; 添加MySQL的Apt源。 将MySQL的APT存储库添加到系统的软件存储库列表中。 1、转到MySQL APT存储库的下载页面MySQL :: Download MySQL APT Reposi…...

redux react-redux @reduxjs/toolkit

redux团队先后推出了redux、react-redux、reduxjs/toolkit&#xff0c;这三个库的api各有不同。本篇文章就来梳理一下当我们需要在项目中集成redux&#xff0c;从直接使用redux&#xff0c;到使用react-redux&#xff0c;再到react-redux和reduxjs/toolkit配合使用&#xff0c;…...

【偏好对齐】通过ORM直接推导出PRM

论文地址&#xff1a;https://arxiv.org/pdf/2412.01981 相关博客 【自然语言处理】【大模型】 ΨPO&#xff1a;一个理解人类偏好学习的统一理论框架 【强化学习】PPO&#xff1a;近端策略优化算法 【偏好对齐】PRM应该奖励单个步骤的正确性吗&#xff1f; 【偏好对齐】通过OR…...

Python与其他编程语言的区别是什么?

Python是一种广泛使用的高级编程语言&#xff0c;以其简洁的语法、强大的库支持和广泛的应用领域而著称。与其他编程语言相比&#xff0c;Python具有许多独特的特点和优势。以下将从多个方面详细探讨Python与其他编程语言的区别&#xff0c;并通过示例进行说明。 一、语法简洁…...

cuda11.6和对应的cudnn(windows)

因为每次不同的torch版本要下对应的cuda&#xff0c;这次刚好在Windows上下好了一个cuda11.6和对应的cudnn&#xff0c;直接放到网盘中&#xff0c;大家有需要对应版本的可以直接下载&#xff1a; 链接&#xff1a;https://pan.quark.cn/s/f153a53830d4 大家自取&#xff0c;c…...

24年无人机行业资讯 | 12.23-12.29

24年无人机行业资讯 | 12.23-12.29 1、 国家发改委新设低空经济司&#xff0c;助力低空经济规范发展2、商务部支持无人机民用国际贸易&#xff0c;强调出口管制与安全并重3、滨州高新区首架无人机成功下线4、 2025第九届世界无人机大会筹备推进会顺利召开5、2024年世界无人机竞…...

uniapp:微信小程序文本长按无法出现复制菜单

一、问题描述 在集成腾讯TUI后&#xff0c;为了能让聊天文本可以复制&#xff0c;对消息组件的样式进行修改&#xff0c;主要是移除下面的user-select属性限制&#xff1a; user-select: none;-webkit-user-select: none;-khtml-user-select: none;-moz-user-select: none;-ms…...

qml Item详解

1、概述 Item是QML&#xff08;Qt Modeling Language&#xff09;的基础元素&#xff0c;所有其他可视化元素都继承自它。它代表了一个可视化的对象&#xff0c;虽然Item对象本身没有可视外观&#xff0c;但它定义了所有可视项之间通用的属性&#xff0c;比如位置、大小、旋转…...

【Java回顾】Day4 反射机制

反射机制 之前学过一部分&#xff0c;笔记在20250103Java包_网络编程.md里,这里在之前的笔记的基础上做一些补充。 反射&#xff1a;得到class对象后反向获取对象的各种信息。 包 Field 类或接口中的字段(成员变量)&#xff0c;动态访问和修改类的字段 模板 获取Class 对象 …...

【沉默的羔羊心理学】汉尼拔的“移情”游戏:操纵与理解的艺术,精神分析学视角下的角色互动

终极解读《沉默的羔羊》&#xff1a;弗洛伊德精神分析学视角下的深层剖析 关键词 沉默的羔羊弗洛伊德精神分析学角色心理意识与潜意识性别与身份 弗洛伊德精神分析学简介 弗洛伊德的精神分析学是心理学的一个重要分支&#xff0c;主要关注人类行为背后的无意识动机和冲突。…...

[深度学习] 大模型学习1-大语言模型基础知识

大语言模型&#xff08;Large Language Model&#xff0c;LLM&#xff09;是一类基于Transformer架构的深度学习模型&#xff0c;主要用于处理与自然语言相关的各种任务。简单来说&#xff0c;当用户输入文本时&#xff0c;模型会生成相应的回复或结果。它能够完成许多任务&…...

如何解决数据库和缓存不一致的问题

目录 一、Cache-Aside模式&#xff08;旁路缓存模式&#xff09; 二、Write-Through模式&#xff08;写透缓存模式&#xff09; 三、Write-Behind模式&#xff08;写回缓存模式&#xff09; 四、先删除缓存再更新数据库&#xff08;不推荐&#xff0c;存在风险&#xff09;…...

剑指Offer|LCR 021. 删除链表的倒数第 N 个结点

LCR 021. 删除链表的倒数第 N 个结点 给定一个链表&#xff0c;删除链表的倒数第 n 个结点&#xff0c;并且返回链表的头结点。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], n 2 输出&#xff1a;[1,2,3,5]示例 2&#xff1a; 输入&#xff1a;head [1], n 1…...

【NX入门篇】

NX入门篇 一、UG NX 由来二、软件如何启动&#xff08;UG NX 12.0&#xff09;三、使用步骤四、常用命令 一、UG NX 由来 UG NX由来&#xff1a; 1969 年&#xff1a;UG 的开发始于美国麦道航空公司&#xff0c;基于 C 语言开发实现&#xff1b;1976 年&#xff1a;UG问世&am…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...