当前位置: 首页 > news >正文

回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

数据准备:准备你的输入数据和目标输出数据。
数据预处理:将数据进行归一化或标准化处理,并划分为训练集和测试集。
构建模型:使用MATLAB的深度学习工具箱来构建CNN-GRU模型。
训练模型:使用训练数据来训练模型。
评估模型:使用验证集和测试集来评估模型的性能。
预测:使用训练好的模型进行预测。

程序设计

  • 完整代码:MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  %% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺for i = 1:size(P_train,2)trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
endfor i = 1:size(p_test,2)testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
endtargetD =  t_train;
targetD_test  =  t_test;numFeatures = size(p_train,1);layers0 = [ ...

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现CNN-GRU卷积门控循环单元多输入单输出回归预测 数据准备&#x…...

HCIA-Access V2.5_7_3_XG(S)原理_关键技术

为什么需要测距 因为上行链路只有一根纤,而且每一个ONU到OLT的距离是不一样的,虽然上行通过TDMA技术,让每一个ONU在不同的时间段发送数据,但是仍然有可能在同一时刻到达分光器,产生数据冲突。 有测距的信元传输 所以为了避免碰撞冲突,通过ONU在注册的时候就会启动测距…...

leetcode hot 100 不同路径

62. 不同路径 已解答 中等 相关标签 相关企业 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” &#xff09…...

智慧工地解决方案 1

建设背景与挑战 工地施工现场环境复杂,人员管理难度大,多工种交叉作业导致管理混乱,事故频发。传统管理方式难以实现科学、有效、集中式的管理,特别是在环境复杂、地点分散的情况下,监管困难,取证复杂。施…...

LeetCode -Hot100 - 53. 最大子数组和

前言 本专栏主要通过“LeetCode 热题100”,来捡起自己本科阶段的算法知识与技巧。语言主要使用c/java。如果同样正在练习LeetCode 热题100的朋友欢迎关注或订阅本专栏。有疑问欢迎留言交流~ 题目描述 题目链接 示例 1: 输入:nums [-2,1…...

php 多进程那点事,用 swoole 如何解决呢 ?

在 PHP 中,多进程的处理通常会遇到一些挑战,比如资源共享、进程间通信、性能优化等。Swoole 是一个高性能的协程和多进程框架,旨在为 PHP 提供异步、并发、协程等功能,解决了传统 PHP 环境中的多进程管理问题。通过使用 Swoole&am…...

探索AI在地质科研绘图中的应用:ChatGPT与Midjourney绘图流程与效果对比

文章目录 个人感受一、AI绘图流程1.1 Midjourney(1)环境配置(2)生成prompt(3)完善prompt(4)开始绘图(5)后处理 1.2 ChatGPT不合理的出图结果解决方案 二、主题…...

【竞技宝】CS2:HLTV 2024 TOP11-w0nderful

北京时间2025年1月4日,HLTV年度选手排名正在持续公布中,今日凌晨正式公布了今年的TOP11为NAVI战队的w0nderful。 选手简介 w0nderful是一名来自于乌克兰的CS选手,现年20岁,目前在比赛中司职狙击手。w0nderful于2020年开启了自己的…...

Lua迭代器如何使用?

在Lua中,迭代器是一种用于遍历集合元素的重要工具。掌握迭代器的使用方法,对于提高Lua编程的效率和代码的可读性具有重要意义。 1.迭代器概述 12.1.1 迭代器介绍 迭代器是一种设计模式,它提供了一种访问集合元素的方法,而不需要…...

qt中如何判断字符串是否为数字,整数,浮点数?

在 Qt 中,可以使用多种方法来判断字符串是否为数字、整数或浮点数。Qt 提供了一些方便的字符串和数值处理函数,可以帮助你实现这些判断。以下是几种常见的方法: 1. 使用 QRegularExpression Qt 提供了 QRegularExpression 类,可…...

Oracle sql developer and Toad for Oracle set start DBMS output

Oracle sql developer Toad for Oracle...

【踩坑】SparkSQL union/unionAll 函数的去重问题

【踩坑】SparkSQL union/unionAll 函数的去重问题 测试数据 case class Employee(first_name:String)val employeeDF1 spark.createDataset(Seq( Employee("Mary"), Employee("Mandy"),Employee("Kurt") )) val employeeDF2 spark.createDat…...

域上的多项式环,整除,相通,互质

例1.已知 (R,,x)为域,请选出正确的说法:(A)(R,,x)也是整区; ABCD (B)R中无零因子; C)R在x运算上满足第一、二、三指数律; (D)R只有平凡理想; (E)R只有平凡子环。 域的特征: 域中,非0元素的加法周期 思考、在模7整数环R,中,…...

计算机毕业设计PyHive+Hadoop深圳共享单车预测系统 共享单车数据分析可视化大屏 共享单车爬虫 共享单车数据仓库 机器学习 深度学习

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

Julia语言的学习路线

Julia语言的学习路线 引言 在现代编程世界中,编程语言如同工具,各自具有独特的特点与优势。Julia语言自2012年发布以来,以其优越的性能和优雅的语法逐渐吸引了越来越多的数据科学家、工程师和研究人员的关注。在本篇文章中,我们…...

对计网大题的一些指正(中间介绍一下CDM的原理和应用)

目录 前言: (1)五层原理体系结构每层功能: 下面是文档的答案: 我在之前的博客里面有介绍过五层原理体系结构, 按理来说,第五层应该是应用层才对,而会话层的功能应该被放到应用层…...

UGUI 优化DrawCall操作记录(基于Unity2021.3.18)

UGUI中相同材质相同Shader相同贴图的UI元素可以合并DrawCall。 1.使用图集 Unity性能优化---使用SpriteAtlas创建图集进行批次优化_unity2021.3.33 spriteatlas优化-CSDN博客 2.Canvas的子物体在场景树中的索引位置和不同图集不影响UI合批且UI网格没有重叠,如下图…...

前端实现大文件上传(文件分片、文件hash、并发上传、断点续传、进度监控和错误处理,含nodejs)

大文件分片上传是前端一种常见的技术,用于提高大文件上传的效率和可靠性。主要原理和步骤如下 文件分片 确定分片大小:确定合适的分片大小。通常分片大小在 1MB 到 5MB 之间使用 Blob.slice 方法:将文件分割成多个分片。每个分片可以使用 Bl…...

es单机安装脚本自动化

背景 所有部署工作都可以由机器本身完成,并不需要人的参与,人唯一需要做的是把变量提取出来,进行赋值喂给脚本,然后脚本自己执行即可。下边是es单机安装的过程和脚本,由人变到脚本执行,方便理解。 步骤 1、解压es软件tar包。 2、cd至解压以后得config目录下,vim修改…...

Java 数据库连接 - Sqlite

Java 数据库连接 - Sqlite PS: 1. 连接依赖库:[sqlite-jdbc-xxx.jar](https://mvnrepository.com/artifact/org.xerial/sqlite-jdbc)(根据连接的数据库版本选择) 2. 支持一次连接执行多次sql语句; 3. 仅本地连接;使用说明: publ…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 ​…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...