【python因果库实战15】因果生存分析4
这里写目录标题
- 加权标准化生存分析
- 总结
- 个体层面的生存曲线

加权标准化生存分析
我们还可以将加权与标准化结合起来,使用 WeightedStandardizedSurvival
模块。在这里,我们将逆倾向得分加权模型(根据基线协变量重新加权人群)与加权回归以及标准化模型相结合:
from causallib.survival.weighted_standardized_survival import WeightedStandardizedSurvivalipw = IPW(learner=LogisticRegression(max_iter=2000))
poly_transform_pipeline = Pipeline([("transform", PolynomialFeatures(degree=2)), ("LR", LogisticRegression(max_iter=8000, C=1.5))]
)
weighted_standardized_survival = WeightedStandardizedSurvival(survival_model=poly_transform_pipeline, weight_model=ipw
)
weighted_standardized_survival.fit(X, a, t, y)population_averaged_survival_curves = weighted_standardized_survival.estimate_population_outcome(X, a, t
)plot_survival_curves(population_averaged_survival_curves,labels=["non-quitters", "quitters"],title="Weighted standardized survival of smoke quitters vs. non-quitters in a 10 years observation period",
)
或者,我们也可以使用 lifelines
包中的 RegressionFitter
类,例如 Cox 比例风险拟合器。这是一种加权的 Cox 分析。
ipw = IPW(learner=LogisticRegression(max_iter=1000))
weighted_standardized_survival = WeightedStandardizedSurvival(survival_model=lifelines.CoxPHFitter(), weight_model=ipw)# Note the fit_kwargs (passed to CoxPHFitter.fit() method)
weighted_standardized_survival.fit(X, a, t, y, fit_kwargs={'robust': True})# Without setting 'robust=True', we'll get the following warning:
"""StatisticalWarning: It appears your weights are not integers, possibly propensity or sampling scores then?
It's important to know that the naive variance estimates of the coefficients are biased. Instead a) set `robust=True` in the call to `fit`, or b) use Monte Carlo to
estimate the variances."""population_averaged_survival_curves = weighted_standardized_survival.estimate_population_outcome(X, a, t)plot_survival_curves(population_averaged_survival_curves, labels=['non-quitters', 'quitters'], title='Weighted standardized survival of smoke quitters vs. non-quitters in a 10 years observation period')
总结
不同模型的并列比较。
import itertoolsdef plot_multiple_models(models_dict):grid_dims = (int(np.round(np.sqrt(len(models_dict)))), int(np.ceil(np.sqrt(len(models_dict)))))grid_indices = itertools.product(range(grid_dims[0]), range(grid_dims[1]))fig, ax = plt.subplots(*grid_dims)models_names = list(models_dict.keys())for model_name, plot_idx in zip(models_names, grid_indices):model = models_dict[model_name]model.fit(X, a, t, y)curves = model.estimate_population_outcome(X, a, t, y)ax[plot_idx].plot(curves[0])ax[plot_idx].plot(curves[1])ax[plot_idx].set_title(model_name)ax[plot_idx].set_ylim(0.7, 1.02)ax[plot_idx].grid()plt.tight_layout()plt.show()
MODELS_DICT = {"MarginalSurvival Kaplan-Meier": MarginalSurvival(survival_model=None),"MarginalSurvival LogisticRegression": MarginalSurvival(survival_model=LogisticRegression(max_iter=2000)),"MarginalSurvival PiecewiseExponential": MarginalSurvival(survival_model=lifelines.PiecewiseExponentialFitter(breakpoints=range(1, 120, 10))),"WeightedSurvival Kaplan-Meier": WeightedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)), survival_model=None),"WeightedSurvival LogisticRegression": WeightedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)),survival_model=LogisticRegression(max_iter=2000),),"WeightedSurvival WeibullFitter": WeightedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)),survival_model=lifelines.WeibullFitter(),),"StandardizedSurvival LogisticRegression": StandardizedSurvival(survival_model=LogisticRegression(max_iter=2000)),"StandardizedSurvival Cox": StandardizedSurvival(survival_model=lifelines.CoxPHFitter()),"WeightedStandardizedSurvival": WeightedStandardizedSurvival(weight_model=IPW(LogisticRegression(max_iter=2000)),survival_model=LogisticRegression(max_iter=2000),),
}plot_multiple_models(MODELS_DICT)
个体层面的生存曲线
在使用直接结果模型(StandardizedSurvival
和 WeightedStandardizedSurvival
)时,可以在 causallib 中生成个体层面的效果估计和生存曲线。
%matplotlib inline
import matplotlib as mpl
import seaborn.objects as so
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from causallib.survival import StandardizedSurvival
from causallib.datasets import load_nhefs_survival
data = load_nhefs_survival(augment=False, onehot=False)
data.t = data.t.rename("longevity")
data.X.join(data.a).join(data.t).join(data.y)
现在让我们创建一个基于公式的数据转换器,以便轻松指定以下两点:
- 使用样条灵活地建模连续变量,
- 创建与所有变量的治疗交互项,以允许效应修正。
from formulaic import Formula
from sklearn.base import BaseEstimator, TransformerMixinclass FormulaTransformer(BaseEstimator, TransformerMixin):def __init__(self, formula):super().__init__()self.formula = formuladef fit(self, X, y=None):return selfdef transform(self, X, y=None):X_ = Formula(self.formula).get_model_matrix(X)return X_
formula = f"""~ 1 + {data.a.name}*(C(exercise) + C(active) + C(education) + sex + race + bs(age, degree=5) + bs(smokeintensity) + bs(smokeyrs) + bs(wt71)+ bs({data.t.name}, degree=5) )"""estimator = make_pipeline(FormulaTransformer(formula),LogisticRegression(penalty="none", max_iter=1000)
)model = StandardizedSurvival(estimator,stratify=False,
)
model.fit(data.X, data.a, data.t, data.y)
po = model.estimate_individual_outcome(data.X, data.a, data.t)
po
遵循 lifelines
的惯例,结果的维度将不同的时间点作为行,个体作为列。
列进一步按照治疗分配索引,因为这些值是潜在结果。
这种结构使我们能够像在非生存分析中那样获得个体层面的效果(生存差异):
effect = po[1] - po[0]
# effect
我们现在将结果转置,使其变为长格式,以便后续绘图:
effect = effect.reset_index(names="time").melt(id_vars="time", var_name="id", value_name="effect")
effect
f = mpl.figure.Figure()# Plot inidividual lines:
p = so.Plot(effect,x="time",y="effect",group="id",
).add(so.Lines(linewidth=.5, alpha=0.1, color="#919090")
).label(title="Spaghetti plot of the effect difference",
).on(f).plot()# Plot average effect:
avg_effect = effect.groupby("time")["effect"].mean().reset_index()
ax = f.axes[0]
ax.plot(avg_effect["time"], avg_effect["effect"], color="#062f80")
ax.text(0, 0, "ATE",verticalalignment="bottom",color="#062f80"
)
f
一旦我们得到了个体级别的生存曲线,我们可以任意聚合它们来观察效应在不同的协变量分层中是如何变化的。
f = mpl.figure.Figure()
effectX = effect.merge(data.X, left_on="id", right_index=True)
strata = "race"p_eff_strat = so.Plot(effectX,x="time",y="effect",color=strata, # Stratify the effect curves bygroup="id",
).add(so.Lines(linewidth=.5, alpha=0.1)
).scale(color=so.Nominal(["#1f77b4", "#ff7f0e"]),
).label(title="Spaghetti plot for stratified effects",
).on(f).plot()
p_eff_stratavg_effect = effectX.groupby(["time", strata])["effect"].mean().reset_index()
ax = f.axes[0]
for s, stratum_data in avg_effect.groupby(strata):ax.plot(stratum_data["time"], stratum_data["effect"], color="black", linestyle="--",)ax.text(stratum_data["time"].iloc[-1], stratum_data["effect"].iloc[-1],f"{strata}:{s}",verticalalignment="center",)f
相关文章:

【python因果库实战15】因果生存分析4
这里写目录标题 加权标准化生存分析总结个体层面的生存曲线 加权标准化生存分析 我们还可以将加权与标准化结合起来,使用 WeightedStandardizedSurvival 模块。在这里,我们将逆倾向得分加权模型(根据基线协变量重新加权人群)与加…...

Linux 线程详解
目录 一、线程概述 二、线程创建 三、线程终止 四、线程回收 五、线程取消 六、线程分离 七、线程安全 一、线程概述 线程是进程内的一个执行单元,是进程内可调度的实体。一个进程可以包含多个线程,这些线程共享进程的资源,如内存空…...
云架构:考量与框架
云架构:考量与框架 引言 在当今的数字化环境中,云计算已成为现代商业运营的基石。一个设计良好的云架构框架为可扩展、安全和弹性的系统奠定了基础。本文将深入探讨云架构的核心要素,讨论重要的考量因素、设计指南,以及最佳实践…...

SD下载、安装、使用、卸载-Stable Diffusion整合包v4.10发布!
目录 前言概述 SD安装1、安装软件2、启动3、配置4、运行5、测试 导入SD模型【决定画风】常用模型下载安装模型 SD卸载SD文生图提示词提示词使用技巧提示词的高级使用技巧强调关键词 前言 我向来不喜欢搞一些没有用的概念,所以直接整理可能用到的东西。 sd简单的说…...
java 发送邮件
前期准备 pom文件中引入 JavaMail API 和 JavaBean Activation FrameWork,得到两个jar包:mail.jar 和 activation.jar 发送简单邮件(只有邮件正文,普通文本) package com.zbttest.email;import com.sun.mail.util.Ma…...

聚类系列 (二)——HDBSCAN算法详解
在进行组会汇报的时候,为了引出本研究动机(论文尚未发表,暂不介绍),需要对DBSCAN、OPTICS、和HDBSCAN算法等进行详细介绍。在查询相关资料的时候,发现网络上对于DBSCAN算法的介绍非常多与细致,但…...
AngularJS HTML DOM
关于《AngularJS HTML DOM》的文章,我找到了一些有用的信息。这篇文章主要介绍了AngularJS如何通过特定的指令与HTML DOM元素进行交互。以下是一些关键点: ng-disabled 指令:这个指令用于将应用程序数据绑定到HTML的disabled属性。例如&#…...
C语言延时实现
C语言延时实现 在C语言中,delay 函数通过空循环实现延时,而不是像其他高级语言(如Python)直接使用 sleep 函数。这种实现方式是基于单片机的特性和C语言的底层操作。下面详细解释为什么这种空循环可以实现延时,以及它…...

OSI模型的网络层中产生拥塞的主要原因?
( 1 )缓冲区容量有限;( 1.5 分) ( 2 )传输线路的带宽有限;( 1.5 分) ( 3 )网络结点的处理能力有限;( 1 分…...

机器学习周报-ModernTCN文献阅读
文章目录 摘要Abstract 0 提升有效感受野(ERF)1 相关知识1.1 标准卷积1.2 深度分离卷积(Depthwise Convolution,DWConv)1.3 逐点卷积(Pointwise Convolution,PWConv)1.4 组卷积(Grou…...

什么是网关路由
1.认识网关 网关(Gateway)和路由(Router)是两个相关但不同的概念。 一、网关(Gateway) 定义 网关是一个网络节点,它充当了不同网络之间的连接点。可以将其看作是一个网络的 “大门”…...

信号的产生、处理
一、信号的概念 信号是linux系统提供的一种,向指定进程发送特定事件的方式。收到信号的进程,要对信号做识别和处理。信号的产生是异步的,进程在工作过程中随时可能收到信号。 信号的种类分为以下这么多种(用指令kill -l查看&…...
在Linux中,zabbix如何监控脑裂?
在Linux中,zabbix监控脑裂主要涉及对高可用(HA)系统中可能发生的节点间通信中断或不一致状态的监控。脑裂问题通常发生在具有冗余节点的高可用系统中,如集群、HA系统或分布式数据库系统,当节点之间失去通信时ÿ…...

C++基础概念复习
前言 本篇文章作基础复习用,主要是在C学习中遇到的概念总结,后续会继续补充。如有不足,请前辈指出,万分感谢。 1、什么是封装,有何优点,在C中如何体现封装这一特性? 封装是面向对象编程&…...

Earth靶场
打开靶机后使用 arp-scan -l 查询靶机 ip 我们使用 nmap 进行 dns 解析 把这两条解析添加到hosts文件中去,这样我们才可以访问页面 这样网站就可以正常打开 扫描ip时候我们发现443是打开的,扫描第二个dns解析的443端口能扫描出来一个 txt 文件 dirsear…...
JavaScript 日期格式
在 JavaScript 中,日期格式可以通过 Date 对象进行操作和格式化。下面是一些常见的 JavaScript 日期格式及其示例: 1. ISO 8601 格式 ISO 8601 是一种标准的日期和时间表示方法,格式为 YYYY-MM-DDTHH:mm:ss.sssZ,例如: let date = new Date(); console.log(date.toISOS…...

django vue3实现大文件分段续传(断点续传)
前端环境准备及目录结构: npm create vue 并取名为big-file-upload-fontend 通过 npm i 安装以下内容"dependencies": {"axios": "^1.7.9","element-plus": "^2.9.1","js-sha256": "^0.11.0&quo…...

xiaoya小雅超集使用夸克网盘缓存教程
距离上一次小白写到关于小雅的教程已经过去了一周的时间,这段时间里,有很多小伙伴都想知道怎么用夸克网盘作为小雅的缓存。 今天这不就来了吗? 这段时间确实是比较忙,毕竟快过年了嘛,辛辛苦苦一整年,至少…...
计算机基础知识复习1.4
数据库事务 #开启一个事务 start transaction #执行SQL语句 SQL1 SQL2 .. #提交事务 commit 类加载器 启动类加载器:负责加载Java的核心库 用C编写,是JVM的一部分,启动类加载器无法被Java程序直接引用 扩展类加载器:是Java语…...

SpringMVC(三)请求
目录 一、RequestMapping注解 1.RequestMapping的属性 实例 1.在这里创建文件,命名为Test: 2.复现-返回一个页面: 创建test界面(随便写点什么): Test文件中编写: 编辑 运行: 3.不返回…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...