回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
目录
- 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
一、极限学习机(ELM)
极限学习机是一种单层前馈神经网络,具有训练速度快、泛化性能好等优点。它的基本思想是随机选择输入权重并计算输出,这样可以大大简化训练过程。在ELM中,输入层到隐藏层的权重是随机生成的,而隐藏层到输出层的权重则是通过求解一个线性方程组来得到的。这种方法避免了传统神经网络在训练过程中需要反复调整权重的问题,从而提高了训练速度。
二、AdaBoost算法
AdaBoost(Adaptive Boosting)是一种集成学习方法,它通过组合多个弱学习器来提高模型的准确性。在AdaBoost中,每个弱学习器都会根据之前的分类或回归结果来调整样本的权重,使得后续的学习器更加关注那些被错误分类或预测的样本。这样,通过多轮迭代,AdaBoost能够逐步构建一个强学习器,从而提高整体的分类或回归性能。
三、ELM-Adaboost多输入单输出回归预测
将ELM与AdaBoost结合起来,可以构建一个高效的多输入单输出回归模型。这种模型的基本思想是:
使用ELM作为基本的回归模型,利用其训练速度快、泛化性能好的优点。
使用AdaBoost算法来集成多个ELM模型,通过调整样本权重和模型权重来优化整体回归性能。
在具体实现过程中,可以按照以下步骤进行:
数据准备与预处理:包括数据标准化等步骤,以确保输入数据的质量和一致性。
ELM模型训练:使用处理后的数据训练多个ELM模型,每个模型都可以看作是一个弱学习器。
AdaBoost集成:通过AdaBoost算法来集成多个ELM模型。在每一轮迭代中,根据之前的回归结果调整样本权重,并使用调整后的权重来训练新的ELM模型。同时,计算每个模型的权重,以便在最终的预测中进行加权组合。
模型评估与优化:使用测试数据集来评估模型的性能,并根据评估结果对模型进行优化。常见的评估指标包括均方误差(MSE)、决定系数(R²)等。
预测与应用:使用训练好的模型进行预测,并将预测结果应用于实际问题中。
程序设计
- 完整代码:MATLAB实ELM-Adaboost多输入单输出回归预测
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc
addpath(genpath(pwd))
%% 导入数据
data = readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:); %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1); %样本个数% 训练集和测试集划分
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501
相关文章:

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机(ELM) 极限学习机是一种单层前馈神经网络,具有训练速…...
Swift Protocols(协议)、Extensions(扩展)、Error Handling(错误处理)、Generics(泛型)
最近在学习 Swift,总结相关知识 1. Protocols(协议) 1.1 协议的定义和实现 协议(protocol) 是一种定义方法和属性的蓝图,任何类、结构体或枚举都可以遵循协议。遵循协议后,需要实现协议中定义…...
.NET中的强名称和签名机制
.NET中的强名称(Strong Name)和签名机制是.NET Framework引入的一种安全性和版本控制机制。以下是关于.NET中强名称和签名机制的详细解释: 强名称 定义: 强名称是由程序集的标识加上公钥和数字签名组成的。程序集的标识包括简单文…...

使用 NestJS 构建高效且模块化的 Node.js 应用程序,从安装到第一个 API 端点:一步一步指南
一、安装 NestJS 要开始构建一个基于 NestJS 的应用,首先需要安装一系列依赖包。以下是必要的安装命令: npm i --save nestjs/core nestjs/common rxjs reflect-metadata nestjs/platform-express npm install -g ts-node包名介绍nestjs/coreNestJS 框…...

2025年大模型技术发展趋势展望:高速旋转的飞轮
2025年大模型技术发展趋势展望 引言1. 多模态大模型(MMM):从单一模态到高级模态融合2. 轻量化大模型:从大参数模型到小参数模型3. 强推理大模型:从概率生成到逻辑推理4. 移动端/边缘端Agent:从云端到本地5.…...
java中类的加载过程及各个阶段与运行时数据区中堆和方法区存储内容
java中类的加载过程 Java 类的加载是 JVM 将 字节码文件(.class 文件)加载到内存并最终转化为运行时数据的过程。它分为以下 五个主要阶段:加载、验证、准备、解析、初始化,每个阶段都有对应的内存位置存储相关信息。以下是类加载…...
渗透测试--Web基础漏洞利用技巧
渗透测试--Web基础漏洞利用技巧 本文章写了Web基础漏洞中一些不那么常见的利用技巧,而不谈及漏洞的原理以及常见用法。 SQL 俺是SQLmap党,哈哈,所以这块就不多讲了。详情可见文章《渗透测试--SQLmap_渗透测试sqlmap-CSDN博客》 XXE XXE组成…...
SpringBoot下载文件的几种方式
小文件:直接将文件一次性读取到内存中,文件大可能会导致OOM GetMapping("/download1")public void download1(HttpServletResponse response) throws IOException {// 指定要下载的文件File file new File("C:\\Users\\syd\\Desktop\\do…...

教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件
1. 安装 PyCharm 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。下载社区版(免费)或专业版(收费,提供更多功能)。按照操作系统的安装指导安装 PyCharm。安装后打开 PyCharm,并根…...
我用Ai学Android Jetpack Compose之Button
答案来自 通义千问,代码同样需要到Android Studio里实践,才能学会。完整工程代码见文末。 我要学Button,麻烦介绍一下 当然可以!Button 是 Jetpack Compose 中用于创建可点击按钮的 Composable 函数。它提供了丰富的配置选项来定…...

修改secure-file-priv参数-mysql5.7.26限制不允许导入或导出的解决方法
文章目录 前言secure_file_priv参数说明修改secure_file_priv参数的步骤 前言 本人是在sql注入的文件上传拿web shel 时所用到的写入文件权限遇到文件上传不成功的问题,记住修改后,重启mysql才生效,最后可以查看验证一下。 secure_file_priv…...
C# 设计模式(结构型模式):适配器模式
C# 设计模式(结构型模式):适配器模式 在软件开发中,我们经常会遇到需要将不同接口的组件结合在一起的情况。此时,适配器模式(Adapter Pattern)就派上了用场。它属于结构型设计模式,…...

Spring Cloud微服务多模块架构:父子工程搭建实践
一、前言 在现代微服务架构中,Spring Cloud 提供了一整套工具和技术栈来简化分布式系统的开发。为了更好地组织和管理复杂的微服务项目,使用 Maven 多模块(父子工程) 是一种高效的方法。 父子工程 是 Maven 中的一种项目结构…...
SkinnedMeshRenderer相关知识
SkinnedMeshRenderer和MeshRenderer unity中SkinnedMeshRenderer是CPU去更改顶点位置的。 而当使用MeshRenderer时,可以靠GPU来进行蒙皮(即更改顶点位置)。 SkinnedMeshRenderer是多线程处理的,在小程序游戏中,只支持…...

前端学习DAY30(水平)
子元素是在父元素的内容区中排列的,如果子元素的大小超过了父元素,则子元素会从 父元素中溢出,使用overflow属性设置父元素如何处理溢出的子元素 可选值:visible 默认值,子元素会从父元素中溢出,在父元素外…...

Spring boot 项目 Spring 注入 代理 并支持 代理对象使用 @Autowired 去调用其他服务
文章目录 类定义与依赖注入方法解析createCglibProxy注意事项setApplicationContext 方法createCglibProxy 方法 类定义与依赖注入 Service: 标识这是一个 Spring 管理的服务类。ApplicationContextAware: 实现该接口允许你在类中获取 ApplicationContext 对象,从而…...
Colyseus 与 HTTP API 的集成
Colyseus 与 HTTP API 的集成 在使用 Colyseus 开发实时多人应用时,通常需要与传统的 HTTP API 集成,例如用户身份验证、存储游戏数据、获取排行榜等。以下是 Colyseus 与 HTTP API 集成的详细介绍: 1. Colyseus 的基本架构 Colyseus 是一个…...

基于服务器部署的综合视频安防系统的智慧快消开源了。
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。国产化人工智能“…...

SpringBoot原理分析-1
SpringBoot原理分析 作为一个javaer,和boot打交道是很常见的吧。熟悉boot的人都会知道,启动一个springboot应用,就是用鼠标点一下启动main方法,然后等着就行了。我们来看看这个main里面。 SpringBootApplication public class E…...

HCIA-Access V2.5_7_5_XG(S)- GPON网络演进为XG(S)-PON网络
目前由于10 GPON ONU数量并没有得到大规模爆发,所以直接新建ODN网络成本相对较高,所以可以采用复用ODN的方案。 XG(S)-PON可以与GPON共享ODN 前面也介绍过GPON和10G GPON使用的波长,我们来回顾一下,在GPON网络中上行采用1310纳米波长,下行采用1490纳米的波长,而10G GPON…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
五年级数学知识边界总结思考-下册
目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...