当前位置: 首页 > news >正文

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

一、极限学习机(ELM)
极限学习机是一种单层前馈神经网络,具有训练速度快、泛化性能好等优点。它的基本思想是随机选择输入权重并计算输出,这样可以大大简化训练过程。在ELM中,输入层到隐藏层的权重是随机生成的,而隐藏层到输出层的权重则是通过求解一个线性方程组来得到的。这种方法避免了传统神经网络在训练过程中需要反复调整权重的问题,从而提高了训练速度。

二、AdaBoost算法
AdaBoost(Adaptive Boosting)是一种集成学习方法,它通过组合多个弱学习器来提高模型的准确性。在AdaBoost中,每个弱学习器都会根据之前的分类或回归结果来调整样本的权重,使得后续的学习器更加关注那些被错误分类或预测的样本。这样,通过多轮迭代,AdaBoost能够逐步构建一个强学习器,从而提高整体的分类或回归性能。

三、ELM-Adaboost多输入单输出回归预测
将ELM与AdaBoost结合起来,可以构建一个高效的多输入单输出回归模型。这种模型的基本思想是:

使用ELM作为基本的回归模型,利用其训练速度快、泛化性能好的优点。
使用AdaBoost算法来集成多个ELM模型,通过调整样本权重和模型权重来优化整体回归性能。
在具体实现过程中,可以按照以下步骤进行:

数据准备与预处理:包括数据标准化等步骤,以确保输入数据的质量和一致性。
ELM模型训练:使用处理后的数据训练多个ELM模型,每个模型都可以看作是一个弱学习器。
AdaBoost集成:通过AdaBoost算法来集成多个ELM模型。在每一轮迭代中,根据之前的回归结果调整样本权重,并使用调整后的权重来训练新的ELM模型。同时,计算每个模型的权重,以便在最终的预测中进行加权组合。
模型评估与优化:使用测试数据集来评估模型的性能,并根据评估结果对模型进行优化。常见的评估指标包括均方误差(MSE)、决定系数(R²)等。
预测与应用:使用训练好的模型进行预测,并将预测结果应用于实际问题中。

程序设计

  • 完整代码:MATLAB实ELM-Adaboost多输入单输出回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  
addpath(genpath(pwd))
%% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机(ELM) 极限学习机是一种单层前馈神经网络,具有训练速…...

Swift Protocols(协议)、Extensions(扩展)、Error Handling(错误处理)、Generics(泛型)

最近在学习 Swift,总结相关知识 1. Protocols(协议) 1.1 协议的定义和实现 协议(protocol) 是一种定义方法和属性的蓝图,任何类、结构体或枚举都可以遵循协议。遵循协议后,需要实现协议中定义…...

.NET中的强名称和签名机制

.NET中的强名称(Strong Name)和签名机制是.NET Framework引入的一种安全性和版本控制机制。以下是关于.NET中强名称和签名机制的详细解释: 强名称 定义: 强名称是由程序集的标识加上公钥和数字签名组成的。程序集的标识包括简单文…...

使用 NestJS 构建高效且模块化的 Node.js 应用程序,从安装到第一个 API 端点:一步一步指南

一、安装 NestJS 要开始构建一个基于 NestJS 的应用,首先需要安装一系列依赖包。以下是必要的安装命令: npm i --save nestjs/core nestjs/common rxjs reflect-metadata nestjs/platform-express npm install -g ts-node包名介绍nestjs/coreNestJS 框…...

2025年大模型技术发展趋势展望:高速旋转的飞轮

2025年大模型技术发展趋势展望 引言1. 多模态大模型(MMM):从单一模态到高级模态融合2. 轻量化大模型:从大参数模型到小参数模型3. 强推理大模型:从概率生成到逻辑推理4. 移动端/边缘端Agent:从云端到本地5.…...

java中类的加载过程及各个阶段与运行时数据区中堆和方法区存储内容

java中类的加载过程 Java 类的加载是 JVM 将 字节码文件(.class 文件)加载到内存并最终转化为运行时数据的过程。它分为以下 五个主要阶段:加载、验证、准备、解析、初始化,每个阶段都有对应的内存位置存储相关信息。以下是类加载…...

渗透测试--Web基础漏洞利用技巧

渗透测试--Web基础漏洞利用技巧 本文章写了Web基础漏洞中一些不那么常见的利用技巧,而不谈及漏洞的原理以及常见用法。 SQL 俺是SQLmap党,哈哈,所以这块就不多讲了。详情可见文章《渗透测试--SQLmap_渗透测试sqlmap-CSDN博客》 XXE XXE组成…...

SpringBoot下载文件的几种方式

小文件:直接将文件一次性读取到内存中,文件大可能会导致OOM GetMapping("/download1")public void download1(HttpServletResponse response) throws IOException {// 指定要下载的文件File file new File("C:\\Users\\syd\\Desktop\\do…...

教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件

1. 安装 PyCharm 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。下载社区版(免费)或专业版(收费,提供更多功能)。按照操作系统的安装指导安装 PyCharm。安装后打开 PyCharm,并根…...

我用Ai学Android Jetpack Compose之Button

答案来自 通义千问,代码同样需要到Android Studio里实践,才能学会。完整工程代码见文末。 我要学Button,麻烦介绍一下 当然可以!Button 是 Jetpack Compose 中用于创建可点击按钮的 Composable 函数。它提供了丰富的配置选项来定…...

修改secure-file-priv参数-mysql5.7.26限制不允许导入或导出的解决方法

文章目录 前言secure_file_priv参数说明修改secure_file_priv参数的步骤 前言 本人是在sql注入的文件上传拿web shel 时所用到的写入文件权限遇到文件上传不成功的问题,记住修改后,重启mysql才生效,最后可以查看验证一下。 secure_file_priv…...

C# 设计模式(结构型模式):适配器模式

C# 设计模式(结构型模式):适配器模式 在软件开发中,我们经常会遇到需要将不同接口的组件结合在一起的情况。此时,适配器模式(Adapter Pattern)就派上了用场。它属于结构型设计模式,…...

Spring Cloud微服务多模块架构:父子工程搭建实践

一、前言 在现代微服务架构中,Spring Cloud 提供了一整套工具和技术栈来简化分布式系统的开发。为了更好地组织和管理复杂的微服务项目,使用 Maven 多模块(父子工程) 是一种高效的方法。 ‍ 父子工程 是 Maven 中的一种项目结构…...

SkinnedMeshRenderer相关知识

SkinnedMeshRenderer和MeshRenderer unity中SkinnedMeshRenderer是CPU去更改顶点位置的。 而当使用MeshRenderer时,可以靠GPU来进行蒙皮(即更改顶点位置)。 SkinnedMeshRenderer是多线程处理的,在小程序游戏中,只支持…...

前端学习DAY30(水平)

子元素是在父元素的内容区中排列的,如果子元素的大小超过了父元素,则子元素会从 父元素中溢出,使用overflow属性设置父元素如何处理溢出的子元素 可选值:visible 默认值,子元素会从父元素中溢出,在父元素外…...

Spring boot 项目 Spring 注入 代理 并支持 代理对象使用 @Autowired 去调用其他服务

文章目录 类定义与依赖注入方法解析createCglibProxy注意事项setApplicationContext 方法createCglibProxy 方法 类定义与依赖注入 Service: 标识这是一个 Spring 管理的服务类。ApplicationContextAware: 实现该接口允许你在类中获取 ApplicationContext 对象,从而…...

Colyseus 与 HTTP API 的集成

Colyseus 与 HTTP API 的集成 在使用 Colyseus 开发实时多人应用时,通常需要与传统的 HTTP API 集成,例如用户身份验证、存储游戏数据、获取排行榜等。以下是 Colyseus 与 HTTP API 集成的详细介绍: 1. Colyseus 的基本架构 Colyseus 是一个…...

基于服务器部署的综合视频安防系统的智慧快消开源了。

智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。国产化人工智能“…...

SpringBoot原理分析-1

SpringBoot原理分析 作为一个javaer,和boot打交道是很常见的吧。熟悉boot的人都会知道,启动一个springboot应用,就是用鼠标点一下启动main方法,然后等着就行了。我们来看看这个main里面。 SpringBootApplication public class E…...

HCIA-Access V2.5_7_5_XG(S)- GPON网络演进为XG(S)-PON网络

目前由于10 GPON ONU数量并没有得到大规模爆发,所以直接新建ODN网络成本相对较高,所以可以采用复用ODN的方案。 XG(S)-PON可以与GPON共享ODN 前面也介绍过GPON和10G GPON使用的波长,我们来回顾一下,在GPON网络中上行采用1310纳米波长,下行采用1490纳米的波长,而10G GPON…...

XML Group端口详解

在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...