当前位置: 首页 > news >正文

分数阶傅里叶变换代码 MATLAB实现

function Faf = myfrft(f, a)
%分数阶傅里叶变换函数
%输入参数:
%f:原始信号
%a:阶数
%输出结果:
%原始信号的a阶傅里叶变换N = length(f);%总采样点数
shft = rem((0:N-1)+fix(N/2),N)+1;%此项等同于fftshift(1:N),起到翻转坐标轴的作用
sN = sqrt(N);%原文离散傅里叶变换,乘积项
a = mod(a,4);%参考分数阶变换的周期性%特殊情况直接处理
if (a==0), Faf = f; return; end %自身
if (a==2), Faf = flipud(f); return; end %f(-x)
if (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end %f的傅里叶变换
if (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end %f的逆傅里叶变换%利用叠加性将阶数变换到0.5 < a < 1.5
if (a>2.0), a = a-2; f = flipud(f); end%a=2是反转
if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end%a=1是傅里叶变换
if (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end%a=-1是逆傅里叶变换%每个步骤对应的因子
alpha = a*pi/2; %转换为角度 (弧度)
tana2 = tan(alpha/2);
sina = sin(alpha);%使用;纵向拼接 .*,.^很重要
f = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)];%使用香农插值,拓展为4N-3
% 线性调频预调制
chrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)'.^2);
f = chrp.*f;
% 线性调频卷积
c = pi/N/sina/4;
Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)'.^2),f);
Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi);
% 线性调频后调制
Faf = chrp.*Faf;
% 乘以最前面的A_Phi项
Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1);endfunction xint=interp(x)%香农插值
% sinc interpolation
N = length(x);
y = zeros(2*N-1,1);
y(1:2:2*N-1) = x;
xint = fconv(y(1:2*N-1), sinc([-(2*N-3):(2*N-3)]'/2));%计算卷积
xint = xint(2*N-2:end-2*N+3);
endfunction z = fconv(x,y)%利用fft快速计算卷积
N = length([x(:);y(:)])-1;%计算最大点数
P = 2^nextpow2(N);%补零
z = ifft( fft(x,P) .* fft(y,P));%频域相乘,时域卷积
z = z(1:N);%去零
end

相关文章:

分数阶傅里叶变换代码 MATLAB实现

function Faf myfrft(f, a) %分数阶傅里叶变换函数 %输入参数&#xff1a; %f&#xff1a;原始信号 %a&#xff1a;阶数 %输出结果&#xff1a; %原始信号的a阶傅里叶变换N length(f);%总采样点数 shft rem((0:N-1)fix(N/2),N)1;%此项等同于fftshift(1:N)&#xff0c;起到翻…...

《数据结构》期末考试测试题【中】

《数据结构》期末考试测试题【中】 21.循环队列队空的判断条件为&#xff1f;22. 单链表的存储密度比1&#xff1f;23.单链表的那些操作的效率受链表长度的影响&#xff1f;24.顺序表中某元素的地址为&#xff1f;25.m叉树第K层的结点数为&#xff1f;26. 在双向循环链表某节点…...

openwrt 清缓存命令行

一、查看缓存 &#xff1a; free -m 二、清缓存&#xff1a;echo 3 > /proc/sys/vm/drop_caches  三、详解。 释放物理页缓存 echo 1 > /proc/sys/vm/drop_caches 释放可回收的slab对象&#xff0c;包含inode and dentry echo 2 > /proc/sys/vm/drop_caches 同时…...

RP2K:一个面向细粒度图像的大规模零售商品数据集

这是一种用于细粒度图像分类的新的大规模零售产品数据集。与以往专注于相对较少产品的数据集不同&#xff0c;我们收集了2000多种不同零售产品的35万张图像&#xff0c;这些图像直接在真实的零售商店的货架上拍摄。我们的数据集旨在推进零售对象识别的研究&#xff0c;该研究具…...

.NET Core FluentAPI

目录 约定配置 主要规则 两种配置方式 Data Annotation Fluent API Fluent API配置 Fluent API众多方法 选择 约定配置 主要规则 表名采用DbContext中的对应的DbSet的属性名。数据表列的名字采用实体类属性的名字&#xff0c;列的数据类型采用和实体类属性类型最兼容…...

【C++数据结构——查找】顺序查找(头歌实践教学平台习题)【合集】

目录&#x1f60b; 任务描述 相关知识 一、根据输入数据建立顺序表 二、顺序表的输出 三、顺序查找算法 测试说明 通关代码 测试结果 任务描述 本关任务&#xff1a;实现顺序查找的算法 相关知识 为了完成本关任务&#xff0c;你需要掌握&#xff1a; 根据输入数据建立…...

HTTP Scheme 通常指的是在 URL 中用于指定使用 HTTP 协议的方案(scheme)

HTTP Scheme 通常指的是在 URL 中用于指定使用 HTTP 协议的方案&#xff08;scheme&#xff09;。URL&#xff08;统一资源定位符&#xff09;中的 scheme 部分指明了访问资源所使用的协议。对于 HTTP&#xff0c;有两个主要的 scheme&#xff1a; - **http**&#xff1a;表示…...

基于Matlab的变压器仿真模型建模方法(13):单相升压自耦变压器的等效电路和仿真模型

1.单相升压自耦变压器的基本方程和等效电路 单相升压自耦变压器的接线原理图如图1所示。在建立自耦变压器的基本方程时,仍然把它看成是从双绕组变压器演变而来。在图1中,设节点a到节点b部分的绕组的匝数为,对应于双绕组变压器的原边绕组;节点c到节点a部分的绕组的绕组匝数为…...

【Vue.js】监听器功能(EventListener)的实际应用【合集】

目录 &#x1f914;在实际开发过程中&#xff0c;我遇到了一个颇为棘手的小问题 &#x1f60b;解决这个小问题 问题出现的原因剖析 解决方法阐述 问题成功解决&#xff01;​ &#x1f4d6;相关知识总结 基本概念 使用方法 实际应用场景 &#x1f914;在实际开发过程中…...

【Shell脚本】Docker构建Java项目,并自动停止原镜像容器,发布新版本

本文简述 经常使用docker部署SpringBoot 项目&#xff0c;因为自己的服务器小且项目简单&#xff0c;因此没有使用自动化部署。每次将jar包传到服务器后&#xff0c;需要手动构建&#xff0c;然后停止原有容器&#xff0c;并使用新的镜像启动&#xff0c;介于AI时代越来越懒的…...

【iOS Swift Moya 最新请求网络框架封装通用】

【iOS Swift Moya 最新请求网络框架封装通用】 前言框架结构1.API定义&#xff08;TargetType&#xff09;2. 配置MoyaProvider3. 网络管理器4. 使用示例注意事项进一步优化 前言 设计一个基于Moya的网络请求框架&#xff0c;可以提供灵活的网络请求管理&#xff0c;例如设置请…...

前端批量下载文件

背景 文件管理页面&#xff0c;后端只提供了一个根据 file_path 和 file_name 参数下载文件的API接口。产品需要支持用户多选之后的批量下载功能。 技术实现 基础代码 先调用下载接口&#xff0c;获取到二进制的文件流&#xff0c;然后通过 a 标签完成下载。 // return [r…...

【pytorch-lightning】架构一览

pytorch-lightning是基于pytorch的一个套壳项目&#xff0c;适配pytorch的版本同步更新速度很快。 它将训练的几个主要流程模块化&#xff0c;减少重复工作&#xff0c;同时让支持分布式训练&#xff0c;不同平台的训练迁移变得更加简单。 官网链接...

MongoDB相关使用问题

1.【报错】sort operation used more than the maximum 33554432 bytes of RAM. Add an index MongoDB 排序超过内存限制&#xff0c;限制最大为100M。 解决方式&#xff1a;将内存排序改为磁盘排序 正常用法&#xff1a;数据量大了再排序会报错 Autowired protected MongoO…...

DevSecOps自动化在安全关键型软件开发中的实践、Helix QAC Klocwork等SAST工具应用

DevSecOps自动化对于安全关键型软件开发至关重要。 那么&#xff0c;什么是DevSecOps自动化&#xff1f;具有哪些优势&#xff1f;为何助力安全关键型软件开发&#xff1f;让我们一起来深入了解~ 什么是DevSecOps自动化&#xff1f; DevSecOps自动化是指在软件开发生命周期的各…...

常见的显示器分辨率及其对应的像素数量

显示器的像素数量通常由其分辨率决定&#xff0c;分辨率表示为水平像素数乘以垂直像素数。 720P&#xff08;1280720&#xff09;&#xff1a; 像素数量&#xff1a;约92.16万特点&#xff1a;这是高清标准的一个分辨率&#xff0c;通常用于手机、平板电脑或小型显示器。900P&…...

TDengine + MQTT :车联网时序数据库如何高效接入

现代新能源汽车&#xff0c;作为一种内部系统极为复杂的交通工具&#xff0c;配备了大量传感器、导航设备、应用软件&#xff0c;这些传感器产生的数据都需要上报到车联网平台当中。对于这些车辆的状态数据&#xff08;如车速、发动机转速等&#xff09;、位置数据&#xff08;…...

maven的中国镜像有哪些

根据您的请求&#xff0c;以下是一些可用的 Maven 中国镜像&#xff1a; 阿里云 官网&#xff1a;阿里云 Maven 镜像配置&#xff1a;<mirror><id>aliyunmaven</id><mirrorOf>*</mirrorOf><name>阿里云公共仓库</name><url>…...

ModelScope ms-swift:轻量级模型微调框架

ModelScope ms-swift&#xff1a;轻量级模型微调框架 介绍支持的模型支持的技术使用方法为什么选择ms-swift&#xff1f;结论 介绍 ModelScope ms-swift是ModelScope社区提供的一个官方框架&#xff0c;用于大型语言模型&#xff08;LLMs&#xff09;和多模态大型模型&#xf…...

深度解析与实践:HTTP 协议

一、引言 HTTP&#xff08;HyperText Transfer Protocol&#xff0c;超文本传输协议&#xff09;是 Web 应用程序、API、微服务以及几乎所有互联网通信的核心协议。虽然它是我们日常使用的基础技术&#xff0c;但要深刻理解其高效使用、优化以及如何避免性能瓶颈&#xff0c;我…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...