当前位置: 首页 > news >正文

nlp培训重点-2

1. 贝叶斯公式

import math
import jieba
import re
import os
import json
from collections import defaultdictjieba.initialize()"""
贝叶斯分类实践P(A|B) = (P(A) * P(B|A)) / P(B)
事件A:文本属于类别x1。文本属于类别x的概率,记做P(x1)
事件B:文本为s (s=w1w2w3..wn)
P(x1|s) = 文本为s,属于x1类的概率.   #求解目标#
P(x1|s) = P(x1|w1, w2, w3...wn) = P(w1, w2..wn|x1) * P(x1) / P(w1, w2, w3...wn)P(x1) 任意样本属于x1的概率。x1样本数/总样本数
P(w1, w2..wn|x1) = P(w1|x1) * P(w2|x1)...P(wn|x1)  词的独立性假设
P(w1|x1) x1类样本中,w1出现的频率公共分母的计算,使用全概率公式:
P(w1, w2, w3...wn) = P(w1,w2..Wn|x1)*P(x1) + P(w1,w2..Wn|x2)*P(x2) ... P(w1,w2..Wn|xn)*P(xn)
"""class BayesApproach:def __init__(self, data_path):self.p_class = defaultdict(int)self.word_class_prob = defaultdict(dict)self.load(data_path)def load(self, path):self.class_name_to_word_freq = defaultdict(dict)self.all_words = set()  #汇总一个词表with open(path, encoding="utf8") as f:for line in f:line = json.loads(line)class_name = line["tag"]title = line["title"]words = jieba.lcut(title)self.all_words = self.all_words.union(set(words))self.p_class[class_name] += 1  #记录每个类别样本数量word_freq = self.class_name_to_word_freq[class_name]#记录每个类别下的词频for word in words:if word not in word_freq:word_freq[word] = 1else:word_freq[word] += 1self.freq_to_prob()return#将记录的词频和样本频率都转化为概率def freq_to_prob(self):#样本概率计算total_sample_count = sum(self.p_class.values())self.p_class = dict([c, self.p_class[c] / total_sample_count] for c in self.p_class)#词概率计算self.word_class_prob = defaultdict(dict)for class_name, word_freq in self.class_name_to_word_freq.items():total_word_count = sum(count for count in word_freq.values()) #每个类别总词数for word in word_freq:#加1平滑,避免出现概率为0,计算P(wn|x1)prob = (word_freq[word] + 1) / (total_word_count + len(self.all_words))self.word_class_prob[class_name][word] = probself.word_class_prob[class_name]["<unk>"] = 1/(total_word_count + len(self.all_words))return#P(w1|x1) * P(w2|x1)...P(wn|x1)def get_words_class_prob(self, words, class_name):result = 1for word in words:unk_prob = self.word_class_prob[class_name]["<unk>"]result *= self.word_class_prob[class_name].get(word, unk_prob)return result#计算P(w1, w2..wn|x1) * P(x1)def get_class_prob(self, words, class_name):#P(x1)p_x = self.p_class[class_name]# P(w1, w2..wn|x1) = P(w1|x1) * P(w2|x1)...P(wn|x1)p_w_x = self.get_words_class_prob(words, class_name)return p_x * p_w_x#做文本分类def classify(self, sentence):words = jieba.lcut(sentence) #切词results = []for class_name in self.p_class:prob = self.get_class_prob(words, class_name)  #计算class_name类概率results.append([class_name, prob])results = sorted(results, key=lambda x:x[1], reverse=True) #排序#计算公共分母:P(w1, w2, w3...wn) = P(w1,w2..Wn|x1)*P(x1) + P(w1,w2..Wn|x2)*P(x2) ... P(w1,w2..Wn|xn)*P(xn)#不做这一步也可以,对顺序没影响,只不过得到的不是0-1之间的概率值pw = sum([x[1] for x in results]) #P(w1, w2, w3...wn)results = [[c, prob/pw] for c, prob in results]#打印结果for class_name, prob in results:print("属于类别[%s]的概率为%f" % (class_name, prob))return resultsif __name__ == "__main__":path = "../data/train_tag_news.json"ba = BayesApproach(path)query = "中国三款导弹可发射多弹头 美无法防御很急躁"ba.classify(query)

2. 支持向量机(SVM)

#!/usr/bin/env python3  
#coding: utf-8#使用基于词向量的分类器
#对比几种模型的效果import json
import jieba
import numpy as np
from gensim.models import Word2Vec
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from collections import defaultdictLABELS = {'健康': 0, '军事': 1, '房产': 2, '社会': 3, '国际': 4, '旅游': 5, '彩票': 6, '时尚': 7, '文化': 8, '汽车': 9, '体育': 10, '家居': 11, '教育': 12, '娱乐': 13, '科技': 14, '股票': 15, '游戏': 16, '财经': 17}#输入模型文件路径
#加载训练好的模型
def load_word2vec_model(path):model = Word2Vec.load(path)return model#加载数据集
def load_sentence(path, model):sentences = []labels = []with open(path, encoding="utf8") as f:for line in f:line = json.loads(line)title, content = line["title"], line["content"]sentences.append(" ".join(jieba.lcut(title)))labels.append(line["tag"])train_x = sentences_to_vectors(sentences, model)train_y = label_to_label_index(labels)return train_x, train_y#tag标签转化为类别标号
def label_to_label_index(labels):return [LABELS[y] for y in labels]#文本向量化,使用了基于这些文本训练的词向量
def sentences_to_vectors(sentences, model):vectors = []for sentence in sentences:words = sentence.split()vector = np.zeros(model.vector_size)for word in words:try:vector += model.wv[word]# vector = np.max([vector, model.wv[word]], axis=0)except KeyError:vector += np.zeros(model.vector_size)vectors.append(vector / len(words))return np.array(vectors)def main():model = load_word2vec_model("model.w2v")train_x, train_y = load_sentence("../data/train_tag_news.json", model)test_x, test_y = load_sentence("../data/valid_tag_news.json", model)classifier = SVC()classifier.fit(train_x, train_y)y_pred = classifier.predict(test_x)print(classification_report(test_y, y_pred))if __name__ == "__main__":main()

核函数:

假设存在一个特征映射函数 ϕ,使得 K(x,y)=ϕ(x)⋅ϕ(y)。核技巧通过直接使用 K(x,y) 计算内积,而无需明确地知道或计算 ϕ(x)。核函数的作用是可以低维映射到高维,从而进行分类。

3. CNN神经网络


import torch
import torch.nn as nn
import numpy as np#使用pytorch的1维卷积层input_dim = 6
hidden_size = 8
kernel_size = 2
torch_cnn1d = nn.Conv1d(input_dim, hidden_size, kernel_size)
for key, weight in torch_cnn1d.state_dict().items():print(key, weight.shape)x = torch.rand((6, 8))  #embedding_size * max_lengthdef numpy_cnn1d(x, state_dict):weight = state_dict["weight"].numpy()bias = state_dict["bias"].numpy()sequence_output = []for i in range(0, x.shape[1] - kernel_size + 1):window = x[:, i:i+kernel_size]kernel_outputs = []for kernel in weight:kernel_outputs.append(np.sum(kernel * window))sequence_output.append(np.array(kernel_outputs) + bias)return np.array(sequence_output).Tprint(x.shape)
print(torch_cnn1d(x.unsqueeze(0)))
print(torch_cnn1d(x.unsqueeze(0)).shape)
print(numpy_cnn1d(x.numpy(), torch_cnn1d.state_dict()))

4. LSTM 

相关文章:

nlp培训重点-2

1. 贝叶斯公式 import math import jieba import re import os import json from collections import defaultdictjieba.initialize()""" 贝叶斯分类实践P(A|B) (P(A) * P(B|A)) / P(B) 事件A&#xff1a;文本属于类别x1。文本属于类别x的概率&#xff0c;记做…...

设计模式(1)——面向对象和面向过程,封装、继承和多态

文章目录 一、day11. 什么是面向对象2. 面向对象的三要素&#xff1a;继承、封装和多态2.1 封装**2.1.1 封装的概念****2.1.2 如何实现封装****2.1.3 封装的底层实现**2.1.4 为什么使用封装&#xff1f;&#xff08;好处&#xff09;**2.1.5 封装只有类能做吗&#xff1f;结构体…...

培训机构Day24

今天讲了一些javaee比较过时的技术&#xff0c;虽然已经过时&#xff0c;该学的还得学学。 知识点&#xff1a; http://localhost:8080/demo01/demo1?a1&b2&c3 pattern: /demo1 上下文路径&#xff1a;ContextPath&#xff0c;/demo01&#xff0c;不包含请求参数。 …...

1/7 C++

练习&#xff1a;要求在堆区连续申请5个int的大小空间用于存储5名学生的成绩&#xff0c;分别完成空间的申请、成绩的录入、升序排序、成绩输出函数&#xff0c;并在主程序中完成测试 要求使用new #include <iostream>using namespace std; double *addr_new() {double …...

C语言初阶习题【23】输出数组的前5项之和

1. 题目描述 求Snaaaaaaaaaaaaaaa的前5项之和&#xff0c;其中a是一个数字&#xff0c; 例如&#xff1a;222222222222222 2.思路 分析下&#xff0c;222222222222222&#xff0c;怎么把它每一项算出来 2 210222 22102222 2221022222 我们的多项式就是a a*102&#xff0c;…...

Android audio(1)-音频模块概述

Audio模块是Android系统的重要组成部分,在 Android 中负责音频路由,数据处理,音频控制,音频设备管理/切换。 下面的内容大多翻译自android官网,读者可跳过阅读后面的博客。 一、系统架构 下图说明了音频模块的组成,并指出各组成部分所涉及的相关源代码。所谓架构就是说模…...

园林与消防工程:选择正确工程项目管理软件的重要性

在园林与消防工程领域&#xff0c;选择正确的工程项目管理软件对于提高项目效率、优化资源配置以及确保项目质量至关重要。以下是对园林与消防工程中选择正确工程项目管理软件重要性的详细分析&#xff1a; 1.提升项目管理效率 实时监控与跟踪&#xff1a;工程项目管理软件能够…...

分布式环境下定时任务扫描时间段模板创建可预订时间段

&#x1f3af; 本文详细介绍了场馆预定系统中时间段生成的实现方案。通过设计场馆表、时间段模板表和时间段表&#xff0c;系统能够根据场馆的提前预定天数生成未来可预定的时间段。为了确保任务执行的唯一性和高效性&#xff0c;系统采用分布式锁机制和定时任务&#xff0c;避…...

SQL刷题笔记——高级条件语句

目录 1题目&#xff1a;SQL149 根据指定记录是否存在输出不同情况 2 作答解析 3 知识点 3.1 count函数 3.2 内连接与左连接 1题目&#xff1a;SQL149 根据指定记录是否存在输出不同情况 2 作答解析 #正确答案 select uid, incomplete_cnt, incomplete_rate from (select …...

与 Oracle Dataguard 相关的进程及作用分析

与 Oracle Dataguard 相关的进程及作用分析 目录 与 Oracle Dataguard 相关的进程及作用分析与 Oracle Dataguard 相关的进程及作用分析一、主库的进程1、LGWR 进程2、ARCH进程3、LNS 进程 二、备库的进程1、RFS 进程2、ARCH3、MRP&#xff08;Managed Recovery Process&#x…...

游戏语音趋势解析,社交互动有助于营造沉浸式体验

语音交互的新架构出现 2024 年标志着对话语音 AI 取得了突破&#xff0c;出现了结合 STT → LLM → TTS 模型来聆听、推理和回应对话的协同语音系统。 OpenAI 的 ChatGPT 语音模式将语音转语音技术变成了现实&#xff0c;引入了基于音频和文本信息进行端到端预训练的模型&…...

美食烹饪互动平台

本文结尾处获取源码。 一、相关技术 后端&#xff1a;Java、JavaWeb / Springboot。前端&#xff1a;Vue、HTML / CSS / Javascript 等。数据库&#xff1a;MySQL 二、相关软件&#xff08;列出的软件其一均可运行&#xff09; IDEAEclipseVisual Studio Code(VScode)Navica…...

【51单片机零基础-chapter5:模块化编程】

模块化编程 将以往main中泛型的代码,放在与main平级的c文件中,在h中引用. 简化main函数 将原来main中的delay抽出 然后将delay放入单独c文件,并单独开一个delay头文件,里面放置函数的声明,相当于收纳delay的c文件里面写的函数的接口. 注意,单个c文件所有用到的变量需要在该文…...

Redis中的主从/Redis八股

四、Redis主从 1.搭建主从架构 不像是负载均衡&#xff0c;这里是主从&#xff0c;是因为redis大多数是读少的是写 步骤 搭建实例&#xff08;建设有三个实例&#xff0c;同一个ip不同端口号&#xff09; 1&#xff09;创建目录 我们创建三个文件夹&#xff0c;名字分别叫700…...

ROS笔记

自定义消息的发布 1.创建空间包 1.创建ROS工作空间&#xff1a; mkdir -p ~/catkin_ws/src cd ~/catkin_ws/ catkin_make source devel/setup.bash 创建工作空间&#xff0c;编译设置环境 2.创建工作空间中的ROS包&#xff1a; cd ~/catkin_ws/src catkin_create_pkg your_pa…...

在 Linux 上调试 C++ 程序

在 Linux 上调试 C 程序是一个常见的开发任务&#xff0c;Linux 提供了多种强大的工具来帮助你进行调试。以下是常用的调试方法和工具. 1. 使用 GDB (GNU Debugger) GDB 是最常用且功能强大的命令行调试器&#xff0c;适用于 C、C 和其他语言。它允许你逐步执行代码、设置断点…...

让跨 project 联查更轻松,SLS StoreView 查询和分析实践

作者&#xff1a;章建&#xff08;处知&#xff09; 概述 日志服务 SLS 是云原生观测和分析平台&#xff0c;为 Log、Metric、Trace 等数据提供大规模、低成本、实时的平台化服务。SLS 提供了多地域支持 [ 1] &#xff0c;方便用户可以根据数据源就近接入 SLS 服务&#xff0…...

20240107-类型转换

1. 自动类型转换 不损失数据精度的前提下&#xff0c;可自动完成变量的类型转换&#xff1b;不损失数据精度指不将超出变量可表示范围的值赋给该变量。 2.强制类型转换 若出现精度损失&#xff0c;java不会自动完成类型转换&#xff0c;需强制进行&#xff0c;见下代码的第8…...

关于Linux PAM模块下的pam_listfile

讲《Linux下禁止root远程登录访问》故事的时候&#xff0c;说好会另开一篇讲讲pam_listfile。我们先看看pam_listfile的man文档怎么介绍的。 下面这些就好比人物的简介&#xff0c;甚是恼人&#xff1b;让人看得不明就里&#xff0c;反正“他大舅他二舅都是他舅”。可以直接跳…...

OKHttp调用第三方接口,响应转string报错okhttp3.internal.http.RealResponseBody@4a3d0218

原因分析 通过OkHttp请求网络&#xff0c;结果请求下来的数据一直无法解析并且报错&#xff0c;因解析时String res response.body().toString() 将toString改为string即可&#xff01;...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好&#xff0c;欢迎来到《云原生核心技术》系列的第七篇&#xff01; 在上一篇&#xff0c;我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在&#xff0c;我们就像一个拥有了一块崭新数字土地的农场主&#xff0c;是时…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...