NLP 技术的突破与未来:从词嵌入到 Transformer
在过去的十年中,自然语言处理(NLP)经历了深刻的技术变革。从早期的统计方法到深度学习的应用,再到如今Transformer架构的普及,NLP 的发展不仅提高了模型的性能,还扩展了其在不同领域中的应用边界。
1. 词嵌入:NLP 迈向语义理解的第一步
早期的 NLP 模型大多基于统计方法,对词语的理解仅限于表面的频率或共现关系。然而,词嵌入技术(Word Embeddings)的出现,让机器能够通过向量的形式理解单词的语义。这些向量能够将具有相似意义的单词映射到特征空间的相邻位置,例如“国王”与“皇后”距离相近,而与“苹果”距离较远。
- 突破点:通过如 Word2Vec 和 GloVe 等方法,词嵌入大幅提升了模型处理文本的能力,特别是在情感分析、文本分类和相似度计算等任务中表现卓越。
2. Encoder-Decoder:解决序列映射的关键技术
面对 NLP 中输入序列和输出序列长度不一致的问题,编码器-解码器(Encoder-Decoder)架构提供了完美的解决方案。
- 工作原理:编码器将输入序列转化为固定长度的上下文向量,而解码器利用该上下文向量生成目标序列。
- 典型应用:这一架构在机器翻译、语音识别、文本摘要等领域取得了显著成果,成为序列到序列任务的基础。
然而,早期的编码器-解码器架构存在信息“瓶颈”的问题:即上下文向量难以完全捕捉长序列中所有的重要信息。这一问题随着“注意力机制(Attention)”的引入得到了有效缓解。
3. 注意力机制:聚焦相关信息的关键能力
注意力机制的提出,让模型能够动态调整对输入信息的关注程度。与传统架构相比,注意力机制能够:
- 动态选择信息:避免模型在处理长序列时丢失关键上下文。
- 突破信息瓶颈:通过提供直接的上下文访问路径,有效解决了长距离依赖问题。
- 提升计算效率:在机器翻译、阅读理解等任务中表现尤为突出。
4. Transformer:颠覆 NLP 的新架构
Transformer的问世标志着 NLP 模型迈入新时代。这种架构完全基于注意力机制,无需像 RNN 或 LSTM 那样顺序处理数据,因此在计算效率和上下文理解方面都有显著优势。
核心特点:
- 并行化计算:大幅提升了模型训练效率。
- 长序列建模能力:更好地捕捉长距离依赖。
- 预训练与微调:通过海量数据预训练后,在特定任务上微调,显著提高性能。
代表性模型:
-
BERT(Bidirectional Encoder Representations from Transformers):
- 专注于双向语义建模,适用于情感分析、问答系统等任务。
- 创新点:通过“遮盖语言建模”(Masked Language Modeling)进行训练,使模型能够结合上下文预测词汇。
-
T5(Text-to-Text Transfer Transformer):
- 将所有 NLP 任务统一为“文本到文本”的格式,无论是分类、生成还是翻译,都可以通过同一架构完成。
-
GPT-3(Generative Pre-trained Transformer 3):
- 拥有 1750 亿参数,是目前最大的语言模型之一。
- 应用场景:生成故事、写代码、回答问题等,表现出极强的生成能力。
5. NLP 的热点与未来挑战
(1) 模型规模与资源消耗
随着模型参数规模的不断扩大(如 GPT-3 拥有 1750 亿参数),其训练和推理过程消耗的计算资源和能源成本也急剧增加。这引发了以下关注:
- 环境影响:研究表明,训练大型 Transformer 模型可能产生大量碳排放。
- 数据偏差:由于训练数据主要来自互联网上的公开文本,这些数据往往过度代表发达国家和主流群体的观点,可能会进一步加剧社会不平等。
(2) 理解 Transformer 模型
尽管 Transformer 模型取得了出色的结果,其工作机制仍未完全被理解。例如:
- 注意力机制的模式是否总是高效?
- 参数的增长是否总能带来性能提升?
研究人员正在通过分析 BERT 等模型的注意力权重分布来更好地理解其内在工作原理。
(3) 少样本学习(Few-Shot Learning)
标注数据的获取成本高昂,而少样本学习(Few-Shot Learning)通过仅需少量甚至零样本的方式完成任务,成为未来的重要研究方向。然而,少样本学习也存在挑战:
- 敏感性:对输入样本的顺序、质量和提示设计依赖较高。
- 通用性:模型在某些任务上的泛化能力仍有待提升。
6. 总结
从早期的词嵌入到如今的 Transformer,NLP 技术经历了从浅层到深层的跃迁。尽管在模型性能、生成能力等方面取得了巨大的进展,但随之而来的资源消耗和社会责任问题也需要更多关注。
未来,如何平衡技术创新与可持续发展,如何通过更小的样本获得更好的结果,将成为 NLP 领域的核心研究方向。随着 Transformer 的持续改进和新技术的涌现,NLP 的未来无疑充满了可能性。
书的英文原文->评论获取提取码
相关文章:
NLP 技术的突破与未来:从词嵌入到 Transformer
在过去的十年中,自然语言处理(NLP)经历了深刻的技术变革。从早期的统计方法到深度学习的应用,再到如今Transformer架构的普及,NLP 的发展不仅提高了模型的性能,还扩展了其在不同领域中的应用边界。 1. 词嵌…...

嵌入式中QT实现文本与线程控制方法
第一:利用QT进行文件读写实现 利用QT进行读写文本的时候进行读写,读取MP3歌词的文本,对这个文件进行读写操作。 实例代码,利用Qfile,对文件进行读写。 //读取对应文件文件,头文件的实现。 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #incl…...

云备份项目--服务端编写
文章目录 7. 数据管理模块7.1 如何设计7.2 完整的类 8. 热点管理8.1 如何设计8.2 完整的类 9. 业务处理模块9.1 如何设计9.2 完整的类9.3 测试9.3.1 测试展示功能 完整的代码–gitee链接 7. 数据管理模块 TODO: 读写锁?普通锁? 7.1 如何设计 需要管理…...

Node.js——fs(文件系统)模块
个人简介 👀个人主页: 前端杂货铺 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…...

SAP BC 同服务器不同client之间的传输SCC1
源配置client不需要释放 登录目标client SCC1...

CentOS: RPM安装、YUM安装、编译安装(详细解释+实例分析!!!)
目录 1.什么是RPM 1.1 RPM软件包命名格式 1.2RPM功能 1.3查询已安装的软件:rpm -q 查询已安装软件的信息 1.4 挂载:使用硬件(光驱 硬盘 u盘等)的方法(重点!!!) 1…...
linux音视频采集技术: v4l2
简介 在 Linux 系统中,视频设备的支持和管理离不开 V4L2(Video for Linux 2)。作为 Linux 内核的一部分,V4L2 提供了一套统一的接口,允许开发者与视频设备(如摄像头、视频采集卡等)进行交互。无…...

MySQL使用navicat新增触发器
找到要新增触发器的表,然后点击设计,找到触发器标签。 根据实际需要,填写相关内容,操作完毕,点击保存按钮。 在右侧的预览界面,可以看到新生成的触发器脚本...

voice agent实现方案调研
前言 目前语音交互主要的实现大体有两种: 级联方案,指的是,大规模语言模型 (LLM)、文本转语音 (TTS) 和语音转文本 (STT),客户的话通过vad断句到STT的语音转文本,经过大模型进行生成文本,生成文本后通过TTS进行回复给用户。(主流方案)端到端的方案,开发者无需再…...

TCP通信原理学习
TCP三次握手和四次挥手以及为什么_哔哩哔哩_bilibili...
Three.js 基础概念:构建3D世界的核心要素
文章目录 前言一、场景(Scene)二、相机(Camera)三、渲染器(Renderer)四、物体(Object)五、材质(Material)六、几何体(Geometry)七、光…...
如何用代码提交spark任务并且获取任务权柄
在国内说所有可能有些绝对,因为确实有少数大厂技术底蕴确实没的说能做出自己的东西,但其他的至少95%数据中台平台研发方案,都是集群中有一个持久化的程序,来接收任务信息,并向集群提交任务同时获取任务的权柄ÿ…...

关于Mac中的shell
1 MacOS中的shell 介绍: 在 macOS 系统中,Shell 是命令行与系统交互的工具,用于执行命令、运行脚本和管理系统。macOS 提供了多种 Shell,主要包括 bash 和 zsh。在 macOS Catalina(10.15)之前,…...
【npm依赖包介绍】借助rimraf依赖包,在用npm run build构建项目时,清空dist目录,避免新旧混合
文章目录 背景如何使用附上rimraf的介绍和说明主要作用使用场景安装使用示例异步删除同步删除 参考资料 背景 在npm run build时,一般都会清空项目中已有的dist目录再构建,避免新旧混合。 如何使用 可以简单使用rimraf这个npm依赖包。 目前rimraf的最…...

爬虫学习记录
1.概念 通过编写程序,模拟浏览器上网,然后让其去互联网上抓取数据的过程 通用爬虫:抓取的是一整张页面数据聚焦爬虫:抓取的是页面中的特定局部内容增量式爬虫:监测网站中数据更新的情况,只会抓取网站中最新更新出来的数据 robots.txt协议: 君子协议,网站后面添加robotx.txt…...

Java Spring Boot实现基于URL + IP访问频率限制
点击下载《Java Spring Boot实现基于URL IP访问频率限制(源代码)》 1. 引言 在现代 Web 应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段。为了保护系统资源,防止服务器过载或服务不可用,需要对接口的访问频率进行限制。本文将介绍如…...

C4D2025 win版本安装完无法打开,提示请将你的maxon App更新至最新版本,如何解决
最近安装C4D2025 win版本时,明明按步骤安装完成,结果打开提示提示请将你的maxon App更新至最新版本?遇到这种情况该如何解决呢。 一开始我的思路以为是旧版本没有删除干净,所以将电脑里有关maxon的软件插件都卸载了,重…...

微信小程序实现登录注册
文章目录 1. 官方文档教程2. 注册实现3. 登录实现4. 关于作者其它项目视频教程介绍 1. 官方文档教程 https://developers.weixin.qq.com/miniprogram/dev/framework/路由跳转的几种方式: https://developers.weixin.qq.com/miniprogram/dev/api/route/wx.switchTab…...

SpringBoot环境和Maven配置
SpringBoot环境和Maven配置 1. 环境准备2. Maven2.1 什么是Maven2.2 为什么要学 Maven2.3 创建一个 Maven项目2.4 Maven核心功能2.4.1 项目构建2.4.2 依赖管理2.4.3 Maven Help插件 2.5 Maven 仓库2.5.1本地仓库2.5.2 中央仓库2.5.3 私有服务器, 也称为私服 2.6 Maven设置国内源…...

大语言模型训练所需的最低显存,联邦大语言模型训练的传输优化技术
联邦大语言模型训练的传输优化技术 目录 联邦大语言模型训练的传输优化技术大语言模型训练所需的最低显存大语言模型训练所需的最低显存 基于模型微调、压缩和分布式并行处理的方法,介绍了相关开源模型及技术应用 核心创新点 多维度优化策略:综合运用基于模型微调、模型压缩和…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...
Python爬虫实战:研究Restkit库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...

网页端 js 读取发票里的二维码信息(图片和PDF格式)
起因 为了实现在报销流程中,发票不能重用的限制,发票上传后,希望能读出发票号,并记录发票号已用,下次不再可用于报销。 基于上面的需求,研究了OCR 的方式和读PDF的方式,实际是可行的ÿ…...
【2D与3D SLAM中的扫描匹配算法全面解析】
引言 扫描匹配(Scan Matching)是同步定位与地图构建(SLAM)系统中的核心组件,它通过对齐连续的传感器观测数据来估计机器人的运动。本文将深入探讨2D和3D SLAM中的各种扫描匹配算法,包括数学原理、实现细节以及实际应用中的性能对比,特别关注…...

【笔记】结合 Conda任意创建和配置不同 Python 版本的双轨隔离的 Poetry 虚拟环境
如何结合 Conda 任意创建和配置不同 Python 版本的双轨隔离的Poetry 虚拟环境? 在 Python 开发中,为不同项目配置独立且适配的虚拟环境至关重要。结合 Conda 和 Poetry 工具,能高效创建不同 Python 版本的 Poetry 虚拟环境,接下来…...