当前位置: 首页 > news >正文

无人机+Ai应用场景!

军事领域

无人机AI制导技术在军事领域的应用尤为突出。通过AI技术,无人机可以自主执行侦察、监视、打击等多种任务,极大地提高了军事行动的效率和准确性。

侦察与监视:AI无人机能够利用先进的传感器和摄像头,对目标区域进行大范围的侦察和监视,实时传输图像和数据,为指挥决策提供重要依据。

打击任务:在AI的支持下,无人机可以自动选择最佳的目标并进行精确打击,提高打击效果并减少误伤。此外,AI技术还可以提供更高级的自主决策能力,使无人机能够适应不同的战场环境和敌情,与人类军事力量形成高效协同作战。

民用领域

除了军事领域,无人机AI制导技术在民用领域也有着广泛的应用前景。

农业监测:配备AI的无人机能够扫描农田,实时监测作物的生长和健康状况,如通过无人机挂载摄像头,识别目标统计图片或视频中的农作物,为农民提供决策支持。

环境监测:在环保方面,可通过无人机检测湖面的漂浮物、垃圾等,让湖泊水域的养护管理、景区的环保工作等变得更加“智能化”。同时,无人机还可以用于空气质量监测、水质监测等方面,为环境保护提供有力支持。

交通监控:通过无人机采集的图像,可在观测区内智能统计人群数量、检测人群拥挤密度,适用于机场、车站、商场、展会、景区等人群密集场所,也可识别目标统计图片或视频中的车辆数量,智能监控分析城市道路、园区或厂区等公共场所的车辆停放情况,监测道路的车辆违停等情况,从而提升交通管理效率。

公共安全:无人机AI制导技术可以用于公共安全领域,如森林火灾监测、野生动物保护等。通过搭载相应的传感器和摄像头,无人机可以实时监测森林火情和野生动物活动情况,为相关部门提供及时准确的预警信息。

应急响应:在自然灾害、事故灾难等应急响应场景中,无人机AI制导技术可以迅速到达现场,进行灾情侦察、人员搜救等工作,为救援行动提供有力支持。

商业领域

在商业领域,无人机AI制导技术也有着广泛的应用潜力。例如,在物流运输方面,无人机可以实现快速、准确的货物配送,降低物流成本,提高物流效率。此外,无人机还可以用于商业拍摄、广告推广等方面,为商业活动提供更多元化的宣传手段。

相关文章:

无人机+Ai应用场景!

军事领域 无人机AI制导技术在军事领域的应用尤为突出。通过AI技术,无人机可以自主执行侦察、监视、打击等多种任务,极大地提高了军事行动的效率和准确性。 侦察与监视:AI无人机能够利用先进的传感器和摄像头,对目标区域进行大范…...

操作手册:集成钉钉审批实例消息监听配置

此文档将记录在慧集通平台怎么实现钉钉审批实例结束或发起或取消时,能够实时的将对应的实例数据抓取出来送入第三方系统 集成平台配置 1、配置中心库,存储钉钉发送的消息,可以忽略,若不配置,则钉钉的消息将不再记录到…...

AI大模型-提示工程学习笔记4

卷首语:我所知的是我自己非常无知,所以我要不断学习。 写给AI入行比较晚的小白们(比如我自己)看的,大神可以直接路过无视了。 不同主题提示词可以完成不同基本任务,常见的提示主题有: 文本概…...

Vue3.5 企业级管理系统实战(一):项目初始搭建与配置

本文详细介绍了如何使用 Vite 构建一个高效的 Vue 3.5 项目框架,并整合了 ESLint、Prettier、EditorConfig、Husky、lint-staged 和 commitlint 等现代化开发工具。通过这些工具的集成,我们能够确保代码质量、格式化和提交规范的一致性,从而提…...

缓存-Redis-缓存更新策略-主动更新策略-Cache Aside Pattern(全面 易理解)

**Cache-Aside Pattern(旁路缓存模式)**是一种广泛应用于缓存管理的设计模式,尤其在使用 Redis 作为缓存层时尤为常见。该模式通过在应用程序与缓存之间引入一个旁路,确保数据的一致性和高效性。本文将在之前讨论的 Redis 主动更新…...

杭州市有哪些大学能够出具论文检索报告?

杭州市具有查收查引服务的学校有浙江大学、杭州电子科技大学、浙江工业大学、杭州师范大学等高校。 1、浙江大学图书馆 浙江大学图书馆提供文献查收查引服务,包括查询学术论文被SCIE、SSCI、A&HCI、EI、CPCI-S、CPCI-SSH、CSSCI、CSCD等国内外权威数据库收录和…...

SpringBootWeb 登录认证(day12)

登录功能 基本信息 请求参数 参数格式:application/json 请求数据样例: 响应数据 参数格式:application/json 响应数据样例: Slf4j RestController public class LoginController {Autowiredpriva…...

使用AOP在切面逻辑中无法获取到requesetBody

使用场景:在接口处理之前,我们需要拿到请求参数,对参数进行校验。注意,这里需要拿到的是原始的请求信息! 一般的获取方式 ServletInputStream inputStream request.getInputStream(); StringBuilder stringBuilder …...

生成模型:变分自编码器-VAE

1.基本概念 1.1 概率 这里有: x为真实图像,开源为数据集, 编码器将其编码为分布参数 x ^ \hat{x} x^为生成图像, 通过解码器获得 p ( x ) ^ \hat{p(x)} p(x)^​: 观测数据的分布, 即数据集所构成的经验分布 p r e a l ( x ) p_{real}(x) preal​(x): …...

Hive sql执行文件合并配置参数

HIVE自动合并输出的小文件的主要优化手段为:HIVE将会启动一个独立的map-reduce任务进行输出文件的merge。 set hive.merge.mapfiles true: 在只有map的作业结束时合并小文件, set hive.merge.mapredfiles true: 在Map-Reduce的任…...

鸿蒙 ArkUI实现地图找房效果

常用的地图找房功能,是在地图上添加区域、商圈、房源等一些自定义 marker,然后配上自己应用的一些筛选逻辑构成,在这里使用鸿蒙 ArkUI 简单实现下怎么添加区域/商圈、房源等 Marker. 1、开启地图服务 在华为开发者官网,注册应用&…...

一套极简易的直流无刷电机(Deng FOC)开发套件介绍

目录 概述 1. 硬件组成介绍 1.1 主要硬件 1.2 电机驱动板介绍 1.3 2208电机模块 1.3.1 参数介绍 1.3.2 认识2208电机 2 驱动板接口介绍 2.1 PCB接口(MCU)定义 2.2 功能描述 2.2.1 电机驱动接口 2.2.2 编码器接口 2.2.3 电流输入引脚接口 2.…...

Inception模型详解及代码分析

模型背景 Inception系列模型由Google团队提出,旨在解决CNN分类模型面临的两大挑战: 如何在增加网络深度的同时提升分类性能 如何在保证分类准确率的同时降低计算和内存开销 Inception V1通过引入 并行卷积结构 和 1x1卷积 ,巧妙地解决了这两个问题,在保证模型质量的前提下…...

Springboot AOP 每个接口运行前 修改入参

控制台log输出为何频频失踪?   wxss代码为何频频失效?   wxml布局为何乱作一团?   究竟是道德的沦丧?还是人性的缺失?   让我们一起来 走 跑进科学 前言 麻蛋被这个功能恶心好久 终于解决了 特此记录一下 正文 Before("authCut()")public void cutProc…...

课题推荐——基于GPS的无人机自主着陆系统设计

关于“基于GPS的无人机自主着陆系统设计”的详细展开,包括项目背景、具体内容、实施步骤和创新点。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击文末卡片联系作者 文章目录 项目背景具体内容实施步骤相关例程MATLAB例程python例程 …...

【深度学习】在深度学习训练过程中,数据量太少会导致模型过拟合还是欠拟合?

过拟合与欠拟合 过拟合 : 是指在训练集上表现非常好,但是在新的数据集上表现较差的现象。具体来说,模型在训练集上过度学习,捕捉了数据中的噪声和偶然性,导致它对训练数据的拟合非常精确,但缺乏泛化能力,无…...

js迭代器模式

以前JS原生的集合类型数据结构,只有Array(数组)和Object(对象); 而ES6中,又新增了Map和Set。四种数据结构各自有着自己特别的内部实现,但我们仍期待以同样的一套规则去遍历它们&…...

测试开发基础知识2

10.什么是等价类和边界值法? 1)等价类划分 等价类划分是将系统的输入域划分为若干部分,然后从每个部分选取少量代表性数据进行测试。等价类划分认为如果一个测试用例在某个等价类中的一个值上通过测试,那么它在这个类中的其他值上也…...

PromQL基础使用和案例解析

文章目录 PromQL简介数据类型1、瞬时数据 (Instant vector)2、区间数据 (Range vector)➢ Time Durations➢ Offest modifier➢ modifier 3、标量数据 (Scalar)4、字符串 (String) 条件匹配1、完全匹配2、正则匹配 运算符1、比较运算符2、算数运算符3、逻辑运算符4、聚合运算符…...

使用Python实现基于机器学习的垃圾邮件过滤

友们好! 我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。 在这个专栏中,你将会找到: ● 深入解析:每一篇文章都将深…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...