OpenCV计算机视觉 08 图像的旋转
图像的旋转
下面是一张小猪佩奇的照片,请进行顺时针90度,逆时针90度,180度旋转
方法一:使用了 NumPy 库的 np.rot90() 函数来实现图像的旋转
np.rot90(img, k=-1) 表示将输入的图像 img 顺时针旋转 90 度,
np.rot90(img, k=1) 表示将图像逆时针旋转 90 度。
import cv2
import numpy as np
#导入原图
img=cv2.imread('小猪佩奇.png')
# 旋转 90 度,k=-1 表示顺时针旋转 90 度
rotated_image1 = np.rot90(img, k=-1)
# 旋转 90 度,k=1 表示逆时针旋转 90 度
rotated_image2 = np.rot90(img, k=1)
cv2.imshow('yuantu',img)
cv2.imshow('rotated_image1',rotated_image1)
cv2.imshow('rotated_image2',rotated_image2)
cv2.waitKey(0)
cv2.destroyAllWindows()
方法二:OpenCV 库的 cv2.rotate()
函数来实现图像的旋转
cv2.rotate(image, flag)
参数说明:
image:要旋转的图像。
flag:指定旋转的方式,有以下几种取值:
cv2.ROTATE_90_CLOCKWISE:顺时针旋转 90 度
cv2.ROTATE_90_COUNTERCLOCKWISE:逆时针旋转 90 度
cv2.ROTATE_180:旋转 180 度
然后通过 cv2.imshow()
函数分别展示顺时针旋转 90 度后的图像(名为 shun90
)、逆时针旋转 90 度后的图像(名为 ni90
)和旋转 180 度后的图像(名为 180
)。
import cv2
#导入原图
img=cv2.imread('小猪佩奇.png')
rotated_image = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE) #顺时针90度
rotated_image1 = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE) #逆时针90度
rotated_image2 = cv2.rotate(img, cv2.ROTATE_180) #旋转180度
cv2.imshow('shun90',rotated_image)
cv2.imshow('ni90',rotated_image1)
cv2.imshow('180',rotated_image2)
cv2.waitKey(0)
这两种方法只能进行90度的整数倍的度数旋转,那要是旋转30度,60度怎么办呢
我们可以先写入下面这个函数
def rotate_image(image, angle, direction='counterclockwise'):(h, w) = image.shape[:2] # 获取图像的高度 h 和宽度 wcenter = (w // 2, h // 2) # 计算图像的中心坐标
if direction == 'counterclockwise': # 如果旋转方向是逆时针M = cv2.getRotationMatrix2D(center, angle, 1.0) # 获取逆时针旋转的变换矩阵elif direction == 'clockwise': # 如果旋转方向是顺时针M = cv2.getRotationMatrix2D(center, -angle, 1.0) # 获取顺时针旋转的变换矩阵
rotated = cv2.warpAffine(image, M, (w, h)) # 应用变换矩阵对图像进行旋转return rotated # 返回旋转后的图像
直接调用这个函数就可以旋转任意度数了
import cv2
#导入原图
img=cv2.imread('小猪佩奇.png')
shun30 = rotate_image(img, 30, 'clockwise') # 顺时针旋转 30 度
ni60= rotate_image(img, 60, 'counterclockwise') # 逆时针旋转 60 度
cv2.imshow('original', img)
cv2.imshow('shun30', shun30)
cv2.imshow('ni60', ni60)
cv2.waitKey(0)
相关文章:

OpenCV计算机视觉 08 图像的旋转
图像的旋转 下面是一张小猪佩奇的照片,请进行顺时针90度,逆时针90度,180度旋转 方法一:使用了 NumPy 库的 np.rot90() 函数来实现图像的旋转 np.rot90(img, k-1) 表示将输入的图像 img 顺时针旋转 90 度, np.rot90(…...

C++感受15-Hello STL 泛型启蒙
生鱼片和STL的关系,你听过吗?泛型编程和面向对象编程,它们打架吗?行为泛型和数据泛型,各自的目的是? 0 楔 俄罗斯生鱼片,号称俄罗斯版的中国烤鸭,闻名于世。其鱼肉,源于…...

【Java 学习】对象赋值的艺术:Java中clone方法的浅拷贝与深拷贝解析,教你如何在Java中实现完美复制
💬 欢迎讨论:如对文章内容有疑问或见解,欢迎在评论区留言,我需要您的帮助! 👍 点赞、收藏与分享:如果这篇文章对您有所帮助,请不吝点赞、收藏或分享,谢谢您的支持&#x…...

基于高斯混合模型的数据分析及其延伸应用(具体代码分析)
一、代码分析 (一)清除工作区和命令行窗口 clear; clc;clear;:该命令用于清除 MATLAB 工作区中的所有变量,确保代码运行环境的清洁,避免之前遗留的变量对当前代码运行产生干扰。例如,如果之前运行的代码中…...
无人机+Ai应用场景!
军事领域 无人机AI制导技术在军事领域的应用尤为突出。通过AI技术,无人机可以自主执行侦察、监视、打击等多种任务,极大地提高了军事行动的效率和准确性。 侦察与监视:AI无人机能够利用先进的传感器和摄像头,对目标区域进行大范…...

操作手册:集成钉钉审批实例消息监听配置
此文档将记录在慧集通平台怎么实现钉钉审批实例结束或发起或取消时,能够实时的将对应的实例数据抓取出来送入第三方系统 集成平台配置 1、配置中心库,存储钉钉发送的消息,可以忽略,若不配置,则钉钉的消息将不再记录到…...
AI大模型-提示工程学习笔记4
卷首语:我所知的是我自己非常无知,所以我要不断学习。 写给AI入行比较晚的小白们(比如我自己)看的,大神可以直接路过无视了。 不同主题提示词可以完成不同基本任务,常见的提示主题有: 文本概…...

Vue3.5 企业级管理系统实战(一):项目初始搭建与配置
本文详细介绍了如何使用 Vite 构建一个高效的 Vue 3.5 项目框架,并整合了 ESLint、Prettier、EditorConfig、Husky、lint-staged 和 commitlint 等现代化开发工具。通过这些工具的集成,我们能够确保代码质量、格式化和提交规范的一致性,从而提…...
缓存-Redis-缓存更新策略-主动更新策略-Cache Aside Pattern(全面 易理解)
**Cache-Aside Pattern(旁路缓存模式)**是一种广泛应用于缓存管理的设计模式,尤其在使用 Redis 作为缓存层时尤为常见。该模式通过在应用程序与缓存之间引入一个旁路,确保数据的一致性和高效性。本文将在之前讨论的 Redis 主动更新…...
杭州市有哪些大学能够出具论文检索报告?
杭州市具有查收查引服务的学校有浙江大学、杭州电子科技大学、浙江工业大学、杭州师范大学等高校。 1、浙江大学图书馆 浙江大学图书馆提供文献查收查引服务,包括查询学术论文被SCIE、SSCI、A&HCI、EI、CPCI-S、CPCI-SSH、CSSCI、CSCD等国内外权威数据库收录和…...

SpringBootWeb 登录认证(day12)
登录功能 基本信息 请求参数 参数格式:application/json 请求数据样例: 响应数据 参数格式:application/json 响应数据样例: Slf4j RestController public class LoginController {Autowiredpriva…...
使用AOP在切面逻辑中无法获取到requesetBody
使用场景:在接口处理之前,我们需要拿到请求参数,对参数进行校验。注意,这里需要拿到的是原始的请求信息! 一般的获取方式 ServletInputStream inputStream request.getInputStream(); StringBuilder stringBuilder …...

生成模型:变分自编码器-VAE
1.基本概念 1.1 概率 这里有: x为真实图像,开源为数据集, 编码器将其编码为分布参数 x ^ \hat{x} x^为生成图像, 通过解码器获得 p ( x ) ^ \hat{p(x)} p(x)^: 观测数据的分布, 即数据集所构成的经验分布 p r e a l ( x ) p_{real}(x) preal(x): …...
Hive sql执行文件合并配置参数
HIVE自动合并输出的小文件的主要优化手段为:HIVE将会启动一个独立的map-reduce任务进行输出文件的merge。 set hive.merge.mapfiles true: 在只有map的作业结束时合并小文件, set hive.merge.mapredfiles true: 在Map-Reduce的任…...

鸿蒙 ArkUI实现地图找房效果
常用的地图找房功能,是在地图上添加区域、商圈、房源等一些自定义 marker,然后配上自己应用的一些筛选逻辑构成,在这里使用鸿蒙 ArkUI 简单实现下怎么添加区域/商圈、房源等 Marker. 1、开启地图服务 在华为开发者官网,注册应用&…...

一套极简易的直流无刷电机(Deng FOC)开发套件介绍
目录 概述 1. 硬件组成介绍 1.1 主要硬件 1.2 电机驱动板介绍 1.3 2208电机模块 1.3.1 参数介绍 1.3.2 认识2208电机 2 驱动板接口介绍 2.1 PCB接口(MCU)定义 2.2 功能描述 2.2.1 电机驱动接口 2.2.2 编码器接口 2.2.3 电流输入引脚接口 2.…...
Inception模型详解及代码分析
模型背景 Inception系列模型由Google团队提出,旨在解决CNN分类模型面临的两大挑战: 如何在增加网络深度的同时提升分类性能 如何在保证分类准确率的同时降低计算和内存开销 Inception V1通过引入 并行卷积结构 和 1x1卷积 ,巧妙地解决了这两个问题,在保证模型质量的前提下…...
Springboot AOP 每个接口运行前 修改入参
控制台log输出为何频频失踪? wxss代码为何频频失效? wxml布局为何乱作一团? 究竟是道德的沦丧?还是人性的缺失? 让我们一起来 走 跑进科学 前言 麻蛋被这个功能恶心好久 终于解决了 特此记录一下 正文 Before("authCut()")public void cutProc…...

课题推荐——基于GPS的无人机自主着陆系统设计
关于“基于GPS的无人机自主着陆系统设计”的详细展开,包括项目背景、具体内容、实施步骤和创新点。如需帮助,或有导航、定位滤波相关的代码定制需求,请点击文末卡片联系作者 文章目录 项目背景具体内容实施步骤相关例程MATLAB例程python例程 …...
【深度学习】在深度学习训练过程中,数据量太少会导致模型过拟合还是欠拟合?
过拟合与欠拟合 过拟合 : 是指在训练集上表现非常好,但是在新的数据集上表现较差的现象。具体来说,模型在训练集上过度学习,捕捉了数据中的噪声和偶然性,导致它对训练数据的拟合非常精确,但缺乏泛化能力,无…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...