【LeetCode】力扣刷题热题100道(26-30题)附源码 轮转数组 乘积 矩阵 螺旋矩阵 旋转图像(C++)
目录
1.轮转数组
2.除自身以外数组的乘积
3.矩阵置零
4.螺旋矩阵
5.旋转图像
1.轮转数组
给定一个整数数组 nums
,将数组中的元素向右轮转 k
个位置,其中 k
是非负数。
class Solution {
public:void rotate(vector<int>& nums, int k) {int n = nums.size();k %= n; // 优化 k,避免多余轮转// 翻转整个数组reverse(nums.begin(), nums.end());// 翻转前 k 个元素reverse(nums.begin(), nums.begin() + k);// 翻转剩余的部分reverse(nums.begin() + k, nums.end());}
};
取模优化: 如果 k 大于数组长度 n,则 k % n 的结果与直接轮转 k 次的效果相同,减少不必要的操作。
数组翻转法: 通过三次翻转完成数组的轮转:
这种方法的时间复杂度为 O(n)O(n)O(n),空间复杂度为 O(1)O(1)O(1)。
首先将整个数组翻转。
然后将前 k 个元素翻转。最后将剩下的部分翻转。
2.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。
题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。请 不要使用除法,且在 O(n) 时间复杂度内完成此题。
class Solution {
public:vector<int> productExceptSelf(vector<int>& nums) {int n = nums.size();vector<int> answer(n, 1);// 计算前缀积int prefix = 1;for (int i = 0; i < n; ++i) {answer[i] = prefix; // 当前元素的前缀积prefix *= nums[i]; // 更新前缀积}// 计算后缀积并更新答案int suffix = 1;for (int i = n - 1; i >= 0; --i) {answer[i] *= suffix; // 乘以当前元素的后缀积suffix *= nums[i]; // 更新后缀积}return answer;}
};
前缀积:
遍历数组,计算每个元素的左侧所有元素的乘积。
存储在 answer[i] 中。
后缀积:
反向遍历数组,计算每个元素右侧所有元素的乘积。
将后缀积与 answer[i] 相乘,得到结果。
优化空间:在同一个数组 answer 中存储前缀积和最终结果,避免额外空间分配。
3.矩阵置零
给定一个 m x n
的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地算法。
class Solution {
public:void setZeroes(vector<vector<int>>& matrix) {int m = matrix.size();int n = matrix[0].size();// 标记第一行和第一列是否需要置零bool firstRowZero = false, firstColZero = false;// 检查第一列是否有零for (int i = 0; i < m; ++i) {if (matrix[i][0] == 0) {firstColZero = true;break;}}// 检查第一行是否有零for (int j = 0; j < n; ++j) {if (matrix[0][j] == 0) {firstRowZero = true;break;}}// 用第一行和第一列作为标记for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {if (matrix[i][j] == 0) {matrix[i][0] = 0;matrix[0][j] = 0;}}}// 根据标记置零for (int i = 1; i < m; ++i) {for (int j = 1; j < n; ++j) {if (matrix[i][0] == 0 || matrix[0][j] == 0) {matrix[i][j] = 0;}}}// 处理第一列if (firstColZero) {for (int i = 0; i < m; ++i) {matrix[i][0] = 0;}}// 处理第一行if (firstRowZero) {for (int j = 0; j < n; ++j) {matrix[0][j] = 0;}}}
};
标记需要置零的行和列:
我们不能直接修改矩阵,因为这样会影响后续的判断。因此,我们可以利用矩阵的第一行和第一列作为标记,用来记录哪些行和列需要置零。
具体步骤:
遍历矩阵,找到为零的元素,将对应的行和列的第一个元素置为零(即标记)。
再次遍历矩阵,使用标记的信息将对应的行和列置为零。
需要额外的变量来记录第一行和第一列是否需要置零,因为这两个被用作标记列。
时间复杂度和空间复杂度:
时间复杂度:O(m * n),需要遍历两次矩阵。空间复杂度:O(1),只使用了常数额外空间。
4.螺旋矩阵
给你一个 m
行 n
列的矩阵 matrix
,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
class Solution {
public:vector<int> spiralOrder(vector<vector<int>>& matrix) {vector<int> result;if (matrix.empty() || matrix[0].empty()) return result;int m = matrix.size();int n = matrix[0].size();int top = 0, bottom = m - 1, left = 0, right = n - 1;while (top <= bottom && left <= right) {// 从左到右遍历 top 边界for (int j = left; j <= right; ++j) {result.push_back(matrix[top][j]);}++top;// 从上到下遍历 right 边界for (int i = top; i <= bottom; ++i) {result.push_back(matrix[i][right]);}--right;// 从右到左遍历 bottom 边界if (top <= bottom) {for (int j = right; j >= left; --j) {result.push_back(matrix[bottom][j]);}--bottom;}// 从下到上遍历 left 边界if (left <= right) {for (int i = bottom; i >= top; --i) {result.push_back(matrix[i][left]);}++left;}}return result;}
};
定义四个边界:
top:矩阵的上边界(初始为0)。
bottom:矩阵的下边界(初始为m-1)。
left:矩阵的左边界(初始为0)。
right:矩阵的右边界(初始为n-1)。
按顺时针顺序遍历:
从左到右遍历 top 边界,然后将 top 增加1。
从上到下遍历 right 边界,然后将 right 减少1。
从右到左遍历 bottom 边界(如果未越界),然后将 bottom 减少1。
从下到上遍历 left 边界(如果未越界),然后将 left 增加1。
终止条件:当 top > bottom 或 left > right 时,遍历结束。
5.旋转图像
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
要在原地旋转一个二维矩阵 matrix 顺时针 90 度,你可以通过以下两步操作来实现:
转置矩阵:首先,将矩阵沿主对角线转置,即将矩阵的行和列交换。这样,矩阵的第 i 行、第 j 列的元素会变成第 j 行、第 i 列的元素。 反转每一行:然后,反转每一行。因为转置之后,每一行的元素顺序相当于原来列的顺序,反转每一行就实现了顺时针旋转 90 度的效果。
class Solution {
public:void rotate(vector<vector<int>>& matrix) {int n = matrix.size();// 步骤 1: 转置矩阵for (int i = 0; i < n; ++i) {for (int j = i + 1; j < n; ++j) {swap(matrix[i][j], matrix[j][i]);}}// 步骤 2: 反转每一行for (int i = 0; i < n; ++i) {reverse(matrix[i].begin(), matrix[i].end());}}
};
转置矩阵:
对于每一对 (i, j),我们将 matrix[i][j] 与 matrix[j][i] 交换。注意,我们从 i 开始循环到 n,从 i+1 开始进行交换,以确保只交换矩阵的上三角部分(即不交换已经交换过的元素)。
反转每一行:对于每一行,使用 reverse(matrix[i].begin(), matrix[i].end()) 来反转这一行
相关文章:

【LeetCode】力扣刷题热题100道(26-30题)附源码 轮转数组 乘积 矩阵 螺旋矩阵 旋转图像(C++)
目录 1.轮转数组 2.除自身以外数组的乘积 3.矩阵置零 4.螺旋矩阵 5.旋转图像 1.轮转数组 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 class Solution { public:void rotate(vector<int>& nums, int k) …...

【C++】字符串的 += 和 + 运算详解
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯1. 字符串的 和 基本用法1.1 的用法1.2 的用法 💯2. 示例代码的剖析与解释代码分析 💯3. 底层实现与性能分析3.1 的实现原理3.2 的实现原理3.…...

多模态大模型部署:结合dify
文章目录 前言minicpm-vDify测试一下总结部署过程回顾集成与测试实验结果分析展望未来 前言 上回说道,我们用ollama部署了一个多模态的大模型,也就是minicpm-v: 但这玩意儿感觉只能打字啊。 怎么给它发图片呢? minicpm-v Mini…...
Matlab Steger提取条纹中心(非极大值抑制)
文章目录 一、简介二、实现代码三、实现效果一、简介 由于在确定条纹的ROI区域之后,会计算出多个条纹中心坐标,因此这里就需要对其进行则优选择,毕竟条纹只有一条,这最简单的方式就是使用非极大值抑制,即选择每一行/列最好的条纹中心。 二、实现代码 Hessian2D.m function…...

springboot + vue+elementUI图片上传流程
1.实现背景 前端上传一张图片,存到后端数据库,并将图片回显到页面上。上传组件使用现成的elementUI的el-upload。、 2.前端页面 <el-uploadclass"upload-demo"action"http://xxxx.xxx.xxx:9090/file/upload" :show-file-list&q…...

LabVIEW 系统诊断
LabVIEW 系统诊断是指通过各种工具和方法检测、评估、分析和解决 LabVIEW 程序和硬件系统中可能存在的故障和性能问题。系统诊断不仅涵盖软件层面的调试与优化,还包括硬件交互、数据传输、实时性能等方面的检查和分析。一个成功的系统诊断能够显著提升LabVIEW应用程…...

韩国机场WebGIS可视化集合Google遥感影像分析
目录 前言 一、相关基础数据介绍 1、韩国的机场信息 2、空间数据准备 二、Leaflet叠加Google地图 1、叠加google地图 2、空间点的标记及展示 3、韩国机场空间分布 三、相关成果展示 1、务安国际机场 2、有同类问题的机场 四、总结 前言 12月29日8时57分左右务安国际机…...

springCloudGateWay使用总结
1、什么是网关 功能: ①身份认证、权限验证 ②服务器路由、负载均衡 ③请求限流 2、gateway搭建 2.1、创建一个空项目 2.2、引入依赖 2.3、加配置 3、断言工厂 4、过滤工厂 5、全局过滤器 6、跨域问题...
使用new Vue创建Vue 实例并使用$mount挂载到元素上(包括el选项和$mount区别)
new Vue({...}) 是创建一个新的 Vue 实例的方式。你可以通过传递一个选项对象来配置这个实例。常见的选项包括: •data:定义组件的数据属性。 •el:指定 Vue 实例应该挂载到哪个 DOM 元素上(通常是一个选择器字符串,如…...
GTX750Ti打DP补丁
背景 咸鱼收了一个二手的GTX750Ti,用于4K60Hz显示器,HDMI接口勉强可以4K60Hz,不过色彩和帧率都不是太正常,理论上它的HDMI接口是不支持的,原本也是打算用DP接口接显示器的,但是发现接DP口之后无法通过bios的vga检测最终一直重启,在华硕B760-K的BIOS中使能CSM是可以使用…...

springmvc前端传参,后端接收
RequestMapping注解 Target({ElementType.METHOD, ElementType.TYPE}) Retention(RetentionPolicy.RUNTIME) Documented Mapping public interface RequestMapping {String name() default "";AliasFor("path")String[] value() default {};AliasFor(&quo…...
PyTorch 张量的分块处理介绍
分块处理是将大型张量分解成较小的块,以便更高效地进行计算,减少内存占用,特别适用于处理超大张量的场景(如深度学习中的大批量数据或大型模型训练)。 PyTorch 提供了多种方法来分块张量,包括 chunk、spli…...
在Ubuntu中使用systemd设置后台自启动服务
引言 在Ubuntu系统中,systemd 是一个非常强大的系统和服务管理器。它不仅负责系统的启动和初始化,还可以帮助我们管理各种后台服务。通过使用 systemd,我们可以轻松地设置服务在系统启动时自动运行,并且能够方便地管理服务的启动…...
mongodb清理删除历史数据
批量清理mongodb历史数据 清理程序的原来 目前项目组上很多平台上线历史数据积压,导致入库查询数据缓慢,历史数据有些已经归档,进行历史数据清理删除。 之前临时写shell脚本,太简陋,重新使用Python进行改造,…...
C++字体库开发之字体回退策略十六
回退表 { "blocks": [ "UBLOCK_BASIC_LATIN", ], "font": { "family": "Noto Sans SC", "style": [ { "name": "Thin", …...

IO进程day3
一、思维导图 二、作业1 使用C语言编写一个简易的界面,界面如下 1:标准输出流 2:标准错误流 3:文件流 要求:按1的时候,通过printf输出数据,按2的时候,通过perror输出数据,…...

【多线程初阶篇¹】线程理解| 线程和进程的区别
目录 一、认识线程Thread 1.为啥引入线程 2.线程理解 🔥 3.面试题:线程和进程的区别 一、认识线程Thread 1.为啥引入线程 为了解决进程太重量的问题 解释(为什么说线程比进程更轻量?/为什么说线程创建/销毁开销比进程小&#…...

wireshark排除私接小路由
1.wireshark打开,发现了可疑地址,合法的地址段DHCP是192.168.100.0段的,打开后查看发现可疑地址段,分别是,192.168.0.1 192.168.1.174 192.168.1.1。查找到它对应的MAC地址。 ip.src192.168.1.1 2.通过show fdb p…...

Docker 从入门到精通
文章目录 Ubuntu 安装Docker步骤前言1. 进入Docker官网,进入开发者页面2. 选择适合自己的安装方式3. 安装 Docker1.更新系统包,安装插件,创建秘钥及目录2.安装 Docker 软件包3.设置开机启动4.通过运行 hello-world 镜像验证安装是否成功 常见…...

uni app 写的 小游戏,文字拼图?文字拼写?不知道叫啥
从下方的偏旁部首中选在1--3个组成上面文章中的文字,完成的文字标红 不喜勿喷 《满江红》 其中用到了两个文件 strdata.json parameters.json 这两个文件太大 放到资源中了 资源文件 <template><view class"wenzi_page_main"><view c…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...