当前位置: 首页 > news >正文

人工智能-机器学习之多元线性回归(项目实践一)

目标:运用scikit-learn进行多元线性回归方程的构建,通过实际案例的训练集和测试集进行预测,最终通过预测结果和MSE来评估预测的精度。

一、首先安装scikit-learn:pip install scikit-learn

C:\Users\CMCC\PycharmProjects\AiProject> pip install scikit-learn

二、项目实战:糖尿病预测,你的健康守护者!

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split#加载糖尿病数据集
diabetes=datasets.load_diabetes()
x=diabetes.data
y=diabetes.targetprint("多元的参数集是:")
print(x)
print("结果集是:")
print(y)#将数据集拆分为训练集和测试集,测试集占20%,训练集占80%
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)#创建一个多元线性回归算法对象
lr=LogisticRegression()#使用训练集训练模型
lr.fit(x_train,y_train)#使用测试集进行结果的预测
y_pred_test=lr.predict(x_test)
y_pred_train=lr.predict(x_train)print("测试集的预测结果是:")
print(y_pred_test)
print("训练集的预测结果是:")
print(y_pred_train)#打印模型的均方差,只保留两位的小数点,分别对于训练集和测试集的均方差进行对比,越小越好,证明越预测得准确
print("均方差:%.2f" % mean_squared_error(y_train ,y_pred_train))
print("均方差:%.2f" % mean_squared_error(y_test ,y_pred_test))多元的参数集是:
[[ 0.03807591  0.05068012  0.06169621 ... -0.00259226  0.01990842-0.01764613][-0.00188202 -0.04464164 -0.05147406 ... -0.03949338 -0.06832974-0.09220405][ 0.08529891  0.05068012  0.04445121 ... -0.00259226  0.00286377-0.02593034]...[ 0.04170844  0.05068012 -0.01590626 ... -0.01107952 -0.046879480.01549073][-0.04547248 -0.04464164  0.03906215 ...  0.02655962  0.04452837-0.02593034][-0.04547248 -0.04464164 -0.0730303  ... -0.03949338 -0.004219860.00306441]]
结果集是:
[151.  75. 141. 206. 135.  97. 138.  63. 110. 310. 101.  69. 179. 185.118. 171. 166. 144.  97. 168.  68.  49.  68. 245. 184. 202. 137.  85.131. 283. 129.  59. 341.  87.  65. 102. 265. 276. 252.  90. 100.  55.61.  92. 259.  53. 190. 142.  75. 142. 155. 225.  59. 104. 182. 128.52.  37. 170. 170.  61. 144.  52. 128.  71. 163. 150.  97. 160. 178.48. 270. 202. 111.  85.  42. 170. 200. 252. 113. 143.  51.  52. 210.65. 141.  55. 134.  42. 111.  98. 164.  48.  96.  90. 162. 150. 279.92.  83. 128. 102. 302. 198.  95.  53. 134. 144. 232.  81. 104.  59.246. 297. 258. 229. 275. 281. 179. 200. 200. 173. 180.  84. 121. 161.99. 109. 115. 268. 274. 158. 107.  83. 103. 272.  85. 280. 336. 281.118. 317. 235.  60. 174. 259. 178. 128.  96. 126. 288.  88. 292.  71.197. 186.  25.  84.  96. 195.  53. 217. 172. 131. 214.  59.  70. 220.268. 152.  47.  74. 295. 101. 151. 127. 237. 225.  81. 151. 107.  64.138. 185. 265. 101. 137. 143. 141.  79. 292. 178.  91. 116.  86. 122.72. 129. 142.  90. 158.  39. 196. 222. 277.  99. 196. 202. 155.  77.191.  70.  73.  49.  65. 263. 248. 296. 214. 185.  78.  93. 252. 150.77. 208.  77. 108. 160.  53. 220. 154. 259.  90. 246. 124.  67.  72.257. 262. 275. 177.  71.  47. 187. 125.  78.  51. 258. 215. 303. 243.91. 150. 310. 153. 346.  63.  89.  50.  39. 103. 308. 116. 145.  74.45. 115. 264.  87. 202. 127. 182. 241.  66.  94. 283.  64. 102. 200.265.  94. 230. 181. 156. 233.  60. 219.  80.  68. 332. 248.  84. 200.55.  85.  89.  31. 129.  83. 275.  65. 198. 236. 253. 124.  44. 172.114. 142. 109. 180. 144. 163. 147.  97. 220. 190. 109. 191. 122. 230.242. 248. 249. 192. 131. 237.  78. 135. 244. 199. 270. 164.  72.  96.306.  91. 214.  95. 216. 263. 178. 113. 200. 139. 139.  88. 148.  88.243.  71.  77. 109. 272.  60.  54. 221.  90. 311. 281. 182. 321.  58.262. 206. 233. 242. 123. 167.  63. 197.  71. 168. 140. 217. 121. 235.245.  40.  52. 104. 132.  88.  69. 219.  72. 201. 110.  51. 277.  63.118.  69. 273. 258.  43. 198. 242. 232. 175.  93. 168. 275. 293. 281.72. 140. 189. 181. 209. 136. 261. 113. 131. 174. 257.  55.  84.  42.146. 212. 233.  91. 111. 152. 120.  67. 310.  94. 183.  66. 173.  72.49.  64.  48. 178. 104. 132. 220.  57.]
测试集的预测结果是:
[72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.]
训练集的预测结果是:
[72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.72. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72.]
均方差:12075.22
均方差:13446.11

相关文章:

人工智能-机器学习之多元线性回归(项目实践一)

目标:运用scikit-learn进行多元线性回归方程的构建,通过实际案例的训练集和测试集进行预测,最终通过预测结果和MSE来评估预测的精度。 一、首先安装scikit-learn:pip install scikit-learn C:\Users\CMCC\PycharmProjects\AiPro…...

后台定时查杀进程策略

2019年做的一个500元价位内手机后台定时查杀的功能策略,现在2025年了回过头看,确实已经不适用了。现在进程管控大部分是不杀进程的方式了,类似冻结(类似苹果的墓碑机制),而杀进程策略主要是场景式异常查杀了,例如明显性…...

Objective-C语言的学习路线

Objective-C语言的学习路线 在程序开发的历史长河中,Objective-C作为一种继承自C语言与Smalltalk的编程语言,扮演着重要的角色。虽然随着Swift语言的出现,Objective-C的使用有所减少,但它依然是iOS和macOS应用开发的重要基础&…...

宁德时代2025年Verify入职测评语言理解及数字推理真题SHL题库汇总、考情分析

宁德时代社招Verify入职测评对薪酬有着重要影响,其规定正确率达到80%才能顺利通过测评。这体现了公司对人才专业素养与能力的严格要求,旨在筛选出真正符合岗位需求的优秀人才。测评内容涵盖了专业知识、技能运用、逻辑思维等多方面,只有综合能…...

【Spring】注入方式

介绍 在Spring框架中,依赖注入(Dependency Injection, DI)是实现控制反转(Inversion of Control, IoC)的核心机制。 除了通过XML配置的注入方式(已逐渐被淘汰),Spring还支持多种基…...

Python 中的作用域:规则与应用

在 Python 编程中,作用域(Scope) 是指一个变量可以被访问和引用的范围。作用域与变量的生命周期密切相关,决定了变量何时被创建、何时被销毁以及在哪些地方可以使用它。理解作用域对于编写清晰、可维护的代码至关重要。 Python 中…...

T-SQL语言的字符串处理

T-SQL语言的字符串处理 引言 在数据库管理和应用开发中,我们经常需要对字符串进行处理。字符串的处理包括查找、替换、分割、拼接以及格式化等操作,而这些操作在SQL Server中可以通过T-SQL(Transact-SQL)来实现。T-SQL是微软SQL…...

宇航用VIRTEX5系列FPGA的动态刷新方法及实现

SRAM型FPGA在宇航领域有广泛的应用,为解决FPGA在空间环境中的单粒子翻转问题,增强设计的可靠性,本文介绍一种低成本的抗辐照解决方案。该方案从外置高可靠存储器中读取配置数据,通过定时刷新结合三模冗余的方式消除单粒子影响&…...

Flink提交任务通过Kerberos认证

Flink提交任务通过Kerberos认证 Clouera官网地址: https://docs.cloudera.com/csa/1.7.0/security/topics/csa-securing-jobs.html Securing Apache Flink jobs flink run -d -p 2 \ -yD security.kerberos.login.keytabtest.keytab \ -yD security.kerberos.lo…...

【linux】文件与目录命令 - cp

文章目录 1. 基本用法2. 常用参数3. 用法举例4. 注意事项 cp 命令用于复制文件或目录,支持单个文件复制、多文件复制以及目录的递归复制,是 Linux 系统中常用的文件管理命令之一。 1. 基本用法 语法: cp [选项] 源文件 目标文件 cp [选项] …...

鸿蒙--登入案例

实现要求: 在账户和密码的输入框输入账号或密码时,提交按钮下方同步出现输入的账户和密码 Entry Component struct login {State username:string State password:string build() {Column(){// 图标Image($r(app.media.app_icon)).width(100).height(…...

【JavaWeb】EL表达式

目录 1.EL表达式概述 2.EL表达式运算 3.EL表达式操作对象 4.EL表达式内置对象 4.1.参数隐藏对象 4.2.域隐藏对象 4.3.PageContext对象 1.EL表达式概述 EL&#xff08;Expression Language&#xff09;是一门表达式语言&#xff0c;它对应<% ... %>。在JSP中&…...

Angular由一个bug说起之十三:Cross Origin

跨域 想要了解跨域&#xff0c;首要要了解源 什么是源&#xff0c;源等于协议加域名加端口号 只有这三个都相同&#xff0c;才是同源&#xff0c;反之则是非同源。 比如下面这四个里&#xff0c;只有第4个是同源 而浏览器给服务器发送请求时&#xff0c;他们的源一样&#xff0…...

WEB前端-2

目录 HTML-常见的网页标签-分类2 语义化标签 列表标签 表单标签 form标签 input标签 select标签 textarea标签 html转义符 h5提供的新标签 【例3&#xff1a;豆瓣电影】 【源码】 【例4&#xff1a;登录注册】 【源码】 【例5&#xff1a;QQ注册】 【源码】 H…...

高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现

高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现 目录 高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现1. 高斯混合模型 (GMM) 算法概述1.1 高斯分布1.2 GMM的优势2. GMM的核心技术2.1 模型定义2.2 参数估计2.3 损失函数3. PyTorch实现G…...

web作业

作业一 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>Document</title> </head&g…...

Tauri教程-基础篇-第一节 Tauri项目创建及结构说明

“如果结果不如你所愿&#xff0c;就在尘埃落定前奋力一搏。”——《夏目友人帐》 “有些事不是看到了希望才去坚持&#xff0c;而是因为坚持才会看到希望。”——《十宗罪》 “维持现状意味着空耗你的努力和生命。”——纪伯伦 Tauri 技术教程 * 第四章 Tauri的基础教程 第一节…...

计算机网络之---物理层标准与协议

常见的物理层标准 1. IEEE 802 标准 IEEE 802 是一系列定义局域网和城域网通信协议的标准&#xff0c;其中许多标准涉及到物理层的技术细节&#xff1a; IEEE 802.3 (Ethernet)&#xff1a;定义了以太网的物理层规范&#xff0c;规定了如何通过电缆&#xff08;例如同轴电缆…...

Idea日志乱码

问题描述 前提&#xff1a;本人使用windows Idea运行sh文件&#xff0c;指定了utf-8编码&#xff0c;但是运行过程中还是存在中文乱码 Idea的相关配置都已经调整 字体调整为雅黑 文件编码均调整为UTF-8 调整Idea配置文件 但是还是存在乱码&#xff0c;既然Idea相关配置已经…...

tk GMV MAX素材范围投放指南

Product GMy Max素材范围说明 Product GMy Max能自动获取带有相关商品锚点链接&#xff08;无论是单个锚点还是多个锚点&#xff09;的视频&#xff0c;并将其用于推广特定商品的广告素材&#xff0c;前提是这些视频已经获得广告授权。然而&#xff0c;请注意&#xff0c;多个…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...