机器学习全流程解析:数据导入到服务上线全阶段介绍
目录
1. 数据导入
2. 数据预处理
3. 超参数搜索与优化
4. 模型训练
5. 模型评估
6. 模型压缩与优化
7. 模型注册与版本管理
8. 服务上线与部署
总结
1. 数据导入
- 数据源:数据库、文件系统、API等。
- 数据格式:CSV、JSON、SQL 数据库表、Parquet 等。
- 数据存储:使用 Pandas、Spark DataFrame 等工具读取数据,并进行初步加载。
示例代码(使用 Pandas 加载数据):
import pandas as pd
data = pd.read_csv("data.csv")
2. 数据预处理
- 缺失值处理:填充、删除或插值处理缺失值。
- 异常值处理:检测并去除或调整异常数据。
- 特征工程:特征选择、特征标准化、归一化、编码(如 One-Hot Encoding)。
- 数据划分:将数据集划分为训练集、验证集、测试集(如 70:20:10)。
示例代码:
from sklearn.model_selection import train_test_split
X = data.drop(columns=["target"])
y = data["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
3. 超参数搜索与优化
- 方法:网格搜索(Grid Search)、随机搜索(Random Search)、贝叶斯优化、超参自动调优(如 Optuna、Ray Tune)。
- 目标:寻找最优的模型超参数,如学习率、树深度、隐藏层数量等。
示例代码(Grid Search):
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifierparams = {'n_estimators': [50, 100], 'max_depth': [None, 10, 20]}
grid_search = GridSearchCV(RandomForestClassifier(), param_grid=params, cv=5)
grid_search.fit(X_train, y_train)
4. 模型训练
- 选择算法:常用算法包括线性回归、决策树、随机森林、XGBoost、深度学习模型(如 CNN、RNN)。
- 训练过程:将模型拟合到训练数据,记录训练日志。
- 早停机制:避免过拟合的策略,当验证集准确率不再提升时提前停止。
示例代码(XGBoost 模型训练):
import xgboost as xgb
model = xgb.XGBClassifier(learning_rate=0.1, max_depth=10, n_estimators=100)
model.fit(X_train, y_train)
5. 模型评估
- 常用指标:准确率(Accuracy)、F1-Score、ROC-AUC、RMSE(回归)、MSE 等。
- 可视化:混淆矩阵、AUC 曲线图、学习曲线等。
示例代码:
from sklearn.metrics import classification_report, confusion_matrixy_pred = model.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
6. 模型压缩与优化
- 方法:
- 剪枝(Pruning):删除不重要的神经元或权重。
- 量化(Quantization):将模型权重从 32 位浮点数压缩为 16 位或 8 位。
- 蒸馏(Knowledge Distillation):利用大模型的知识来训练一个小模型。
示例:
import torch
model_fp32 = torch.load("model.pt")
model_int8 = torch.quantization.quantize_dynamic(model_fp32, {torch.nn.Linear}, dtype=torch.qint8)
7. 模型注册与版本管理
- 模型注册:保存训练好的模型并赋予版本号(如
v1.0)。 - 工具:
- MLFlow:用于模型跟踪、保存和注册。
- TensorFlow Serving 或 PyTorch Serve:部署模型服务时常用工具。
- 模型仓库:可用云平台,如 AWS S3、Google Cloud Storage 等。
8. 服务上线与部署
- 方式:
- 批量预测:预先生成预测结果。
- 在线服务:使用 RESTful API 提供实时预测。
- 工具:
- FastAPI、Flask、Django REST API 提供 HTTP 接口服务。
- Docker 镜像化部署,使用 Kubernetes 实现集群管理和负载均衡。
示例代码(使用 FastAPI 部署服务):
from fastapi import FastAPI
import joblibapp = FastAPI()
model = joblib.load("model.pkl")@app.post("/predict")
async def predict(data: dict):prediction = model.predict([list(data.values())])return {"prediction": prediction[0]}
总结
- 数据导入:加载数据,保证输入数据的准确性。
- 数据预处理:清洗、转换特征,确保数据质量。
- 超参搜索:通过 Grid Search、Random Search 等优化模型参数。
- 模型训练:选择合适的模型进行训练。
- 模型评估:通过测试集评估模型表现,调整优化模型。
- 模型压缩:剪枝、量化、蒸馏等提高模型效率。
- 模型注册:保存训练结果和版本控制。
- 服务上线:通过 API 提供在线推理服务,确保稳定上线。
这一流程贯穿了数据到模型上线的每个阶段,可以根据实际情况适配各类 ML 项目。
相关文章:
机器学习全流程解析:数据导入到服务上线全阶段介绍
目录 1. 数据导入 2. 数据预处理 3. 超参数搜索与优化 4. 模型训练 5. 模型评估 6. 模型压缩与优化 7. 模型注册与版本管理 8. 服务上线与部署 总结 1. 数据导入 数据源:数据库、文件系统、API等。数据格式:CSV、JSON、SQL 数据库表、Parquet …...
C#从“Hello World!“开始
是时候一览C#的庐山真面目了。现在,让我们从"Hello World"开始吧,出发! 1. 一个简单的C#程序 先来看一段最简单的示例代码,如代码清单2-1所示。 代码清单2-1 HelloWorldClass.cs using System;namespace Programmi…...
LVS 支持 UDP 协议代理
在现代网络架构中,负载均衡技术是保证高可用性和高性能的关键组成部分。Linux Virtual Server(LVS)作为一个高效、稳定的负载均衡解决方案,广泛应用于处理 TCP 流量的场景。然而,随着实时通信、视频流和在线游戏等应用的不断发展,UDP 协议的支持成为了 LVS 负载均衡的重要…...
【C++经典例题】求1+2+3+...+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句
💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏: 期待您的关注 题目描述: 原题链接: 求123...n_牛客题霸_牛客网 (nowcoder.com) 解题思路: …...
Rabbitmq 具体怎么做到削峰的,是丢弃部分消费吗,有的实际场景是不允许丢弃
在高并发场景中,RabbitMQ 可以通过几种策略来实现 削峰(缓解瞬时负载激增),而这些策略并不一定需要丢弃消息。在一些业务场景下,丢弃消息显然是不允许的,因此在这种情况下,可以使用以下方法来确…...
Linux渗透实战之Nullbyte靶场提权
0x1 前言 一、浅谈 哈喽师傅们,这次又到了给师傅们分享文章的时候了,这篇文章呢主要是给师傅们以vulnhub中的Nullbyte靶场来给师傅们演示下通过Hydra表单暴力破解等操作拿到账户密码,然后中间以四种sql注入的方式给大家非常详细的操作了sql…...
(STM32笔记)十二、DMA的基础知识与用法 第三部分
我用的是正点的STM32F103来进行学习,板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话,用的也是这个板子和教程。 DMA的基础知识与用法 三、DMA程序验证1、DMA 存储器到存储器模式实验(1)DMA结构体解释(2…...
品牌账号矩阵如何打造?来抄作业
在讲究全域营销的当下,目前企业都在各自搭建品牌矩阵号,以提升自己在不同渠道上的影响力。虽然不同平台之间有诸多细节值得深究,但也不妨碍我们先了解如何搭建品牌矩阵。接下来,就让我们一同来了解下该如何搭建。 一、一个主账号 …...
基于vue的商城小程序的毕业设计与实现(源码及报告)
环境搭建 ☞☞☞ Vue入手篇(一),防踩雷(全网最详细教程)_vue force-CSDN博客 目录 一、功能介绍 二、登录注册功能 三、首页 四、项目截图 五、源码获取 一、功能介绍 用户信息展示:页面顶部设有用户头像和昵称展示区,方便用户识别…...
NineData云原生智能数据管理平台新功能发布|2024年12月版
本月发布 7 项更新,其中重点发布 2 项、功能优化 5 项。 重点发布 数据库 Devops - Oracle 非表对象支持可视化创建与管理 Oracle 非表对象,包括视图(View)、包(Package)、存储过程(Procedur…...
【Vue.js 组件化】高效组件管理与自动化实践指南
文章目录 摘要引言组件命名规范与组织结构命名规范目录组织 依赖管理工具自动化组件文档生成构建自动引入和文档生成的组件化体系代码结构自动引入组件配置使用 Storybook 展示组件文档自动生成 代码详解QA 环节总结参考资料 摘要 在现代前端开发中,组件化管理是 V…...
Clojure语言的并发编程
Clojure语言的并发编程 引言 在现代软件开发中,并发编程成为了处理多个任务、提高应用效率和响应速度的重要手段。尤其是在多核处理器逐渐成为主流的今天,如何高效利用这些计算资源是每个开发者面临的挑战。Clojure作为一种函数式编程语言,…...
RabbitMQ-SpringAMQP使用介绍
RabbitMQ 1. Spring AMQP1.1 引入依赖1.2 消息发送1.3 消息接收1.4 WorkQueue模型1.4.1 实例代码1.4.2 能者多劳1.4.3 总结 1.5交换机1.6 Fanout交换机(广播)1.7 Direct交换机(订阅)1.8 Topic交换机(通配符订阅&#x…...
ASP.NET Core 中服务生命周期详解:Scoped、Transient 和 Singleton 的业务场景分析
前言 在 ASP.NET Core 中,服务的生命周期直接影响应用的性能和行为。通过依赖注入容器 (Dependency Injection, DI),我们可以为服务定义其生命周期:Scoped、Transient 和 Singleton。本文将详细阐述这些生命周期的区别及其在实际业务中的应用…...
c语言----------小知识
1 system函数的使用 #include <stdlib.h> int system(const char *command); 功能:在已经运行的程序中执行另外一个外部程序 参数:外部可执行程序名字 返回值: 成功:0 失败:任意数字示例代码: #inc…...
React Context用法总结
1. 基本概念 1.1 什么是 Context Context 提供了一种在组件树中共享数据的方式,而不必通过 props 显式地逐层传递。它主要用于共享那些对于组件树中许多组件来说是"全局"的数据。 1.2 基本用法 // 1. 创建 Context const ThemeContext React.createC…...
[笔记] 使用 Jenkins 实现 CI/CD :从 GitLab 拉取 Java 项目并部署至 Windows Server
随着软件开发节奏的加快,持续集成(CI)和持续部署(CD)已经成为确保软件质量和加速产品发布的不可或缺的部分。Jenkins作为一款广泛使用的开源自动化服务器,为开发者提供了一个强大的平台来实施这些实践。然而…...
腾讯云AI代码助手编程挑战赛-如意
作品简介 《如意》是一款结合腾讯云AI代码助手生成的、集智能问答、知识学习和生活助手功能于一体的应用,在通过先进的AI技术提升用户的工作效率、学习效果和生活质量。无论是解答疑难问题、提供专业建议,还是帮助规划日程、提升技能,它都能…...
TAS测评倍智题库 | 益丰大药房2025年中高层测评BA商业推理测评真题考什么?
您好!您已被邀请参加360评估。您的评估与反馈将有助于被评估人更深入地了解个人情况,发现个人优势和潜在风险。请您秉持公正、开放的心态进行评估。请尽快完成评估,在此衷心感谢您的配合与支持! 相关事宜: 请您在…...
2025 First LOOK! CnosDB 新版本 2.4.3.1 发布
🔹 版本号:2.4.3.1 🔹 发布日期:2024年11月05日 功能优化 简化编解码器错误定义 #2368 删除不必要的const DEFAULT_* #2378 添加 wal 压缩检查 #2377 移除 page reader #2380 创建配额 #2367 减少内存复制和计算 #2384 构…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
