当前位置: 首页 > news >正文

Python对象的序列化和反序列化工具:Joblib与Pickle

在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSONYAMLPickleJoblib等。其中,PickleJoblib是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有所不同,适用于不同的场景。

本文将详细介绍JoblibPickle的区别,以及在实际应用中选择它们的考虑因素。

1. Pickle简介

Pickle是Python标准库中的模块,专门用于对象的序列化和反序列化。它可以将Python中的大多数对象(如字典、列表、类实例等)转化为字节流,从而能够存储到磁盘或者通过网络传输,反序列化则将字节流转回原本的对象。

Pickle的特点:

  • Python标准库pickle是Python自带的模块,使用起来非常简单,不需要额外安装。
  • 支持Python对象:支持多种Python对象,包括自定义类的实例、字典、列表等。
  • 二进制和文本模式:可以选择以二进制模式或文本模式存储序列化数据。
  • 可移植性差:虽然pickle格式在不同Python环境中能很好地工作,但它并不适用于跨语言传输或长时间存储。

Pickle使用示例

import pickle # 序列化对象 
data = {'name': 'Alice', 'age': 30, 'score': [90, 95, 88]} 
with open('data.pkl', 'wb') as f: pickle.dump(data, f) # 反序列化对象 
with open('data.pkl', 'rb') as f: loaded_data = pickle.load(f) 
print(loaded_data)

2. Joblib简介

Joblib是一个外部库,专门用于高效地序列化和反序列化Python对象,尤其是大规模数据结构和机器学习模型。它通常在处理大型数值数组(例如NumPy数组或scikit-learn的机器学习模型)时表现优越。

Joblib的特点:

  • 高效处理大数据:与Pickle相比,Joblib更适合序列化大型数组和对象。它在存储NumPy数组等大数据时,能够自动进行压缩,从而减少存储空间。
  • 并行计算支持Joblib还支持将数据存储过程分布到多个进程上,提高序列化和反序列化的速度。
  • 优化的压缩算法:默认支持GZIP压缩,可以减少存储空间和加速磁盘I/O。
  • 不适合小型数据:对于小型数据,Joblib的优势并不明显,反而可能会带来额外的开销。

Joblib使用示例

from joblib import dump, load # 序列化对象 
data = {'name': 'Bob', 'age': 25, 'score': [80, 85, 89]} 
dump(data, 'data.joblib') # 反序列化对象 
loaded_data = load('data.joblib') 
print(loaded_data)

3. Pickle与Joblib的区别

特性PickleJoblib
用途通用的Python对象序列化工具主要用于序列化大型数据和机器学习模型
支持的对象适用于几乎所有Python对象(如字典、类实例等)优化用于NumPy数组和scikit-learn模型
性能适合小型和中等大小的对象对大数据(如NumPy数组)有更好的支持
压缩支持无内建压缩(需要手动压缩)默认支持压缩(如GZIP、LZ4等)
跨语言兼容性不适用于跨语言(仅适用于Python)不适用于跨语言(仅适用于Python)
易用性Python标准库,自带需要安装joblib
序列化速度对于小对象较快对于大型数据结构更加高效
存储空间没有自动压缩支持压缩,减少存储空间

4. 选择Pickle还是Joblib?

选择Pickle还是Joblib,通常取决于对象的大小和应用场景:

  • 使用Pickle
    • 如果数据量较小或数据类型多样(如包含多个Python数据类型或自定义对象),Pickle是一个简洁且高效的选择。
    • 适用于较简单的存储需求或对于数据量要求不高的场景。
  • 使用Joblib
    • 如果需要序列化的大数据是数值型数据(如NumPy数组),或者是机器学习模型(如scikit-learn的模型),Joblib会提供更高效的性能。
    • 如果数据需要压缩存储(尤其是需要处理大量的数值数据或大规模模型),Joblib的压缩算法能大幅减少磁盘占用。

5. 总结

  • Pickle适合大部分常规的Python对象序列化工作,尤其是数据较小的情况。
  • Joblib则更适用于处理大数据和机器学习模型,尤其是需要压缩和高效存储的场景。

通过合理选择PickleJoblib,可以使得序列化过程更加高效,并为大规模数据的存储提供支持。在机器学习、数据分析和科学计算等领域,Joblib通常是更优的选择,而在一般的Python开发中,Pickle仍然是一个简单、实用的工具。

相关文章:

Python对象的序列化和反序列化工具:Joblib与Pickle

在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSON、YAML、Pickle和Joblib等。其中,Pickle和Joblib是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有…...

Spring Boot3 配合ProxySQL实现对 MySQL 主从同步的读写分离和负载均衡

将 ProxySQL 配合 Spring Boot 使用,主要的目的是在 Spring Boot 应用程序中实现对 MySQL 主从同步的读写分离和负载均衡。这样,你可以利用 ProxySQL 自动将写操作路由到主库,而将读操作路由到从库。 1. 准备工作 确保你的 MySQL 主从同步环…...

量子计算遇上人工智能:突破算力瓶颈的关键?

引言:量子计算遇上人工智能——突破算力瓶颈的关键? 在数字化时代的浪潮中,人工智能(AI)正以前所未有的速度改变着我们的生活,从语音助手到自动驾驶,从医学诊断到金融分析,无不彰显其…...

【Unity插件】解决移动端UI安全区问题 - Safe Area Helper

在移动端设计界面时,必须要考虑的就是UI的安全区。 Unity本身也提供了Safearea的API。 但在asset store时已经有人提供了免费的插件(Safe Area Helper),我们可以直接使用。 插件链接: https://assetstore.unity.com/p…...

JSON.stringify 实现深度克隆的缺陷

在前端开发中,深克隆(Deep Clone)和浅克隆(Shallow Clone)是常见的操作。浅克隆和深克隆的区别主要体现在对象内部嵌套对象的处理方式上。 1. 浅克隆(Shallow Clone) 浅克隆是指创建一个新对象…...

深度解析如何使用Linux中的git操作

1.如何理解版本控制 →Git&&gitee||github 多版本控制面对善变的甲方 版本控制是一种用于管理文件或代码变更的系统,帮助团队或个人追踪项目的历史记录,并支持多方协作开发。它在软件开发和文档管理中尤为重要,但也适用于其他需要追…...

el-table 合并单元格

参考文章&#xff1a;vue3.0 el-table 动态合并单元格 - flyComeOn - 博客园 <el-table :data"tableData" border empty-text"暂无数据" :header-cell-style"{ background: #f5f7fa }" class"parent-table" :span-method"obj…...

Redis 三大问题:缓存穿透、缓存击穿、缓存雪崩

Redis 作为高性能的内存数据库&#xff0c;广泛应用于缓存场景。然而&#xff0c;在实际使用中&#xff0c;可能会遇到三大经典问题&#xff1a;缓存穿透、缓存击穿 和 缓存雪崩。这些问题如果不加以解决&#xff0c;可能会导致系统性能下降甚至崩溃。 1. 缓存穿透 问题描述 …...

常用字符串处理函数

常用字符串处理函数 strcspn函数原型参数说明返回值使用示例注意事项 strpbrk函数原型参数说明返回值使用示例 strcasecmp函数原型参数说明返回值使用示例注意事项 strcspn strcspn 是一个 C 和 C 标准库函数&#xff0c;用于计算一个字符串中不包含任何指定字符的最长前缀的长…...

Pathview包:整合表达谱数据可视化KEGG通路

Pathview是一个用于整合表达谱数据并用于可视化KEGG通路的一个R包&#xff0c;其会先下载KEGG官网上的通路图&#xff0c;然后整合输入数据对通路图进行再次渲染&#xff0c;从而对KEGG通路图进行一定程度上的个性化处理&#xff0c;并且丰富其信息展示。&#xff08;KEGG在线数…...

seleniun 自动化程序,python编程 我监控 chrome debug数据后 ,怎么获取控制台的信息呢

python 好的&#xff0c;使用 Python 来监控 Chrome 的调试数据并获取控制台信息&#xff0c;可以使用 websocket-client 库来连接 Chrome 的 WebSocket 接口。以下是一个详细的示例&#xff1a; 1. 安装必要的库 首先&#xff0c;你需要安装 websocket-client 库。可以使用…...

SQL中的数据库对象

视图&#xff1a;VIEW 概念 ① 虚拟表&#xff0c;本身不存储数据&#xff0c;可以看做是存储起来的SELECT语句 ② 视图中SELECT语句中涉及到的表&#xff0c;称为基表 ③ 针对视图做DML操作&#xff0c;对影响到基表中的数据&#xff0c;反之亦然 ④ 创建、删除视图本身&#…...

DeepSeek:性能强劲的开源模型

deepseek 全新系列模型 DeepSeek-V3 首个版本上线并同步开源。登录官网 chat.deepseek.com 即可与最新版 V3 模型对话。 性能对齐海外领军闭源模型​ DeepSeek-V3 为自研 MoE 模型&#xff0c;671B 参数&#xff0c;激活 37B&#xff0c;在 14.8T token 上进行了预训练。 论…...

医疗可视化大屏 UI 设计新风向

智能化交互 借助人工智能与机器学习技术&#xff0c;实现更智能的交互功能。如通过语音指令或手势控制来操作大屏&#xff0c;医护人员无需手动输入&#xff0c;可更便捷地获取和处理信息。同时&#xff0c;系统能根据用户的操作习惯和数据分析&#xff0c;自动推荐相关的医疗…...

从企业级 RAG 到 AI Assistant , Elasticsearch AI 搜索技术实践

文章目录 01 AI 搜索落地的挑战02 Elasticsearch 向量性能 5 倍提升03 Elasticsearch 企业版 AI 能力全面解读04 阿里云 Elasticsearch 将准确率提升至 95%05 AI Assistant 集成通义千问大模型实现 AI Ops01 AI 搜索落地的挑战 在过去一年中,基座大模型技术的快速迭代推动了 …...

TypeScript语言的并发编程

TypeScript语言的并发编程 引言 随着现代应用程序的复杂性不断增加&#xff0c;性能和用户体验的重要性显得尤为突出。在这种背景下&#xff0c;并发编程应运而生&#xff0c;成为提升应用程序效率的重要手段。在JavaScript及其超集TypeScript中&#xff0c;尽管语言本身是单…...

benchANT 性能榜单技术解读 Part 1:写入吞吐

近期&#xff0c;国际权威数据库性能测试榜单 benchANT 更新了 Time Series: Devops&#xff08;时序数据库&#xff09;场景排名&#xff0c;KaiwuDB 数据库在 xsmall 和 small 两类规格下的时序数据写入吞吐、查询吞吐、查询延迟、成本效益等多项指标刷新榜单原有数据纪录。在…...

虚拟机防火墙管理

虚拟机防火墙管理 在网络防护方面&#xff0c;PVE提供了相当良好的防火墙管理功能&#xff0c;并且可以适用于节点实体机、客体机、让客体机内不需要另外再安装软体防火墙&#xff0c;对于效能与统一管理大有助益&#xff0c;管理者可以方便一次管理所有的防火墙规则&#xff0…...

Nginx反向代理请求头有下划线_导致丢失问题处理

后端发来消息说前端已经发了但是后端没收到请求。 发现是下划线的都没收到&#xff0c;搜索之后发现nginx默认request的header中包含’_’时&#xff0c;会自动忽略掉。 解决方法是&#xff1a;在nginx里的nginx.conf配置文件中的http部分中添加如下配置&#xff1a; unders…...

【STM32+CubeMX】 新建一个工程(STM32F407)

相关文章&#xff1a; 【HAL库】 STM32CubeMX 教程 1 --- 下载、安装 目录 第一部分、新建工程 第二部分、工程文件解释 第三部分、编译验证工程 友情约定&#xff1a;本系列的前五篇&#xff0c;为了方便新手玩家熟悉CubeMX、Keil的使用&#xff0c;会详细地截图每一步Cu…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...