Python对象的序列化和反序列化工具:Joblib与Pickle
在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSON、YAML、Pickle和Joblib等。其中,Pickle和Joblib是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有所不同,适用于不同的场景。
本文将详细介绍Joblib和Pickle的区别,以及在实际应用中选择它们的考虑因素。
1. Pickle简介
Pickle是Python标准库中的模块,专门用于对象的序列化和反序列化。它可以将Python中的大多数对象(如字典、列表、类实例等)转化为字节流,从而能够存储到磁盘或者通过网络传输,反序列化则将字节流转回原本的对象。
Pickle的特点:
- Python标准库:
pickle是Python自带的模块,使用起来非常简单,不需要额外安装。 - 支持Python对象:支持多种Python对象,包括自定义类的实例、字典、列表等。
- 二进制和文本模式:可以选择以二进制模式或文本模式存储序列化数据。
- 可移植性差:虽然
pickle格式在不同Python环境中能很好地工作,但它并不适用于跨语言传输或长时间存储。
Pickle使用示例
import pickle # 序列化对象
data = {'name': 'Alice', 'age': 30, 'score': [90, 95, 88]}
with open('data.pkl', 'wb') as f: pickle.dump(data, f) # 反序列化对象
with open('data.pkl', 'rb') as f: loaded_data = pickle.load(f)
print(loaded_data)
2. Joblib简介
Joblib是一个外部库,专门用于高效地序列化和反序列化Python对象,尤其是大规模数据结构和机器学习模型。它通常在处理大型数值数组(例如NumPy数组或scikit-learn的机器学习模型)时表现优越。
Joblib的特点:
- 高效处理大数据:与
Pickle相比,Joblib更适合序列化大型数组和对象。它在存储NumPy数组等大数据时,能够自动进行压缩,从而减少存储空间。 - 并行计算支持:
Joblib还支持将数据存储过程分布到多个进程上,提高序列化和反序列化的速度。 - 优化的压缩算法:默认支持GZIP压缩,可以减少存储空间和加速磁盘I/O。
- 不适合小型数据:对于小型数据,
Joblib的优势并不明显,反而可能会带来额外的开销。
Joblib使用示例
from joblib import dump, load # 序列化对象
data = {'name': 'Bob', 'age': 25, 'score': [80, 85, 89]}
dump(data, 'data.joblib') # 反序列化对象
loaded_data = load('data.joblib')
print(loaded_data)
3. Pickle与Joblib的区别
| 特性 | Pickle | Joblib |
|---|---|---|
| 用途 | 通用的Python对象序列化工具 | 主要用于序列化大型数据和机器学习模型 |
| 支持的对象 | 适用于几乎所有Python对象(如字典、类实例等) | 优化用于NumPy数组和scikit-learn模型 |
| 性能 | 适合小型和中等大小的对象 | 对大数据(如NumPy数组)有更好的支持 |
| 压缩支持 | 无内建压缩(需要手动压缩) | 默认支持压缩(如GZIP、LZ4等) |
| 跨语言兼容性 | 不适用于跨语言(仅适用于Python) | 不适用于跨语言(仅适用于Python) |
| 易用性 | Python标准库,自带 | 需要安装joblib库 |
| 序列化速度 | 对于小对象较快 | 对于大型数据结构更加高效 |
| 存储空间 | 没有自动压缩 | 支持压缩,减少存储空间 |
4. 选择Pickle还是Joblib?
选择Pickle还是Joblib,通常取决于对象的大小和应用场景:
- 使用Pickle:
- 如果数据量较小或数据类型多样(如包含多个Python数据类型或自定义对象),
Pickle是一个简洁且高效的选择。 - 适用于较简单的存储需求或对于数据量要求不高的场景。
- 如果数据量较小或数据类型多样(如包含多个Python数据类型或自定义对象),
- 使用Joblib:
- 如果需要序列化的大数据是数值型数据(如
NumPy数组),或者是机器学习模型(如scikit-learn的模型),Joblib会提供更高效的性能。 - 如果数据需要压缩存储(尤其是需要处理大量的数值数据或大规模模型),
Joblib的压缩算法能大幅减少磁盘占用。
- 如果需要序列化的大数据是数值型数据(如
5. 总结
- Pickle适合大部分常规的Python对象序列化工作,尤其是数据较小的情况。
- Joblib则更适用于处理大数据和机器学习模型,尤其是需要压缩和高效存储的场景。
通过合理选择Pickle或Joblib,可以使得序列化过程更加高效,并为大规模数据的存储提供支持。在机器学习、数据分析和科学计算等领域,Joblib通常是更优的选择,而在一般的Python开发中,Pickle仍然是一个简单、实用的工具。
相关文章:
Python对象的序列化和反序列化工具:Joblib与Pickle
在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSON、YAML、Pickle和Joblib等。其中,Pickle和Joblib是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有…...
Spring Boot3 配合ProxySQL实现对 MySQL 主从同步的读写分离和负载均衡
将 ProxySQL 配合 Spring Boot 使用,主要的目的是在 Spring Boot 应用程序中实现对 MySQL 主从同步的读写分离和负载均衡。这样,你可以利用 ProxySQL 自动将写操作路由到主库,而将读操作路由到从库。 1. 准备工作 确保你的 MySQL 主从同步环…...
量子计算遇上人工智能:突破算力瓶颈的关键?
引言:量子计算遇上人工智能——突破算力瓶颈的关键? 在数字化时代的浪潮中,人工智能(AI)正以前所未有的速度改变着我们的生活,从语音助手到自动驾驶,从医学诊断到金融分析,无不彰显其…...
【Unity插件】解决移动端UI安全区问题 - Safe Area Helper
在移动端设计界面时,必须要考虑的就是UI的安全区。 Unity本身也提供了Safearea的API。 但在asset store时已经有人提供了免费的插件(Safe Area Helper),我们可以直接使用。 插件链接: https://assetstore.unity.com/p…...
JSON.stringify 实现深度克隆的缺陷
在前端开发中,深克隆(Deep Clone)和浅克隆(Shallow Clone)是常见的操作。浅克隆和深克隆的区别主要体现在对象内部嵌套对象的处理方式上。 1. 浅克隆(Shallow Clone) 浅克隆是指创建一个新对象…...
深度解析如何使用Linux中的git操作
1.如何理解版本控制 →Git&&gitee||github 多版本控制面对善变的甲方 版本控制是一种用于管理文件或代码变更的系统,帮助团队或个人追踪项目的历史记录,并支持多方协作开发。它在软件开发和文档管理中尤为重要,但也适用于其他需要追…...
el-table 合并单元格
参考文章:vue3.0 el-table 动态合并单元格 - flyComeOn - 博客园 <el-table :data"tableData" border empty-text"暂无数据" :header-cell-style"{ background: #f5f7fa }" class"parent-table" :span-method"obj…...
Redis 三大问题:缓存穿透、缓存击穿、缓存雪崩
Redis 作为高性能的内存数据库,广泛应用于缓存场景。然而,在实际使用中,可能会遇到三大经典问题:缓存穿透、缓存击穿 和 缓存雪崩。这些问题如果不加以解决,可能会导致系统性能下降甚至崩溃。 1. 缓存穿透 问题描述 …...
常用字符串处理函数
常用字符串处理函数 strcspn函数原型参数说明返回值使用示例注意事项 strpbrk函数原型参数说明返回值使用示例 strcasecmp函数原型参数说明返回值使用示例注意事项 strcspn strcspn 是一个 C 和 C 标准库函数,用于计算一个字符串中不包含任何指定字符的最长前缀的长…...
Pathview包:整合表达谱数据可视化KEGG通路
Pathview是一个用于整合表达谱数据并用于可视化KEGG通路的一个R包,其会先下载KEGG官网上的通路图,然后整合输入数据对通路图进行再次渲染,从而对KEGG通路图进行一定程度上的个性化处理,并且丰富其信息展示。(KEGG在线数…...
seleniun 自动化程序,python编程 我监控 chrome debug数据后 ,怎么获取控制台的信息呢
python 好的,使用 Python 来监控 Chrome 的调试数据并获取控制台信息,可以使用 websocket-client 库来连接 Chrome 的 WebSocket 接口。以下是一个详细的示例: 1. 安装必要的库 首先,你需要安装 websocket-client 库。可以使用…...
SQL中的数据库对象
视图:VIEW 概念 ① 虚拟表,本身不存储数据,可以看做是存储起来的SELECT语句 ② 视图中SELECT语句中涉及到的表,称为基表 ③ 针对视图做DML操作,对影响到基表中的数据,反之亦然 ④ 创建、删除视图本身&#…...
DeepSeek:性能强劲的开源模型
deepseek 全新系列模型 DeepSeek-V3 首个版本上线并同步开源。登录官网 chat.deepseek.com 即可与最新版 V3 模型对话。 性能对齐海外领军闭源模型 DeepSeek-V3 为自研 MoE 模型,671B 参数,激活 37B,在 14.8T token 上进行了预训练。 论…...
医疗可视化大屏 UI 设计新风向
智能化交互 借助人工智能与机器学习技术,实现更智能的交互功能。如通过语音指令或手势控制来操作大屏,医护人员无需手动输入,可更便捷地获取和处理信息。同时,系统能根据用户的操作习惯和数据分析,自动推荐相关的医疗…...
从企业级 RAG 到 AI Assistant , Elasticsearch AI 搜索技术实践
文章目录 01 AI 搜索落地的挑战02 Elasticsearch 向量性能 5 倍提升03 Elasticsearch 企业版 AI 能力全面解读04 阿里云 Elasticsearch 将准确率提升至 95%05 AI Assistant 集成通义千问大模型实现 AI Ops01 AI 搜索落地的挑战 在过去一年中,基座大模型技术的快速迭代推动了 …...
TypeScript语言的并发编程
TypeScript语言的并发编程 引言 随着现代应用程序的复杂性不断增加,性能和用户体验的重要性显得尤为突出。在这种背景下,并发编程应运而生,成为提升应用程序效率的重要手段。在JavaScript及其超集TypeScript中,尽管语言本身是单…...
benchANT 性能榜单技术解读 Part 1:写入吞吐
近期,国际权威数据库性能测试榜单 benchANT 更新了 Time Series: Devops(时序数据库)场景排名,KaiwuDB 数据库在 xsmall 和 small 两类规格下的时序数据写入吞吐、查询吞吐、查询延迟、成本效益等多项指标刷新榜单原有数据纪录。在…...
虚拟机防火墙管理
虚拟机防火墙管理 在网络防护方面,PVE提供了相当良好的防火墙管理功能,并且可以适用于节点实体机、客体机、让客体机内不需要另外再安装软体防火墙,对于效能与统一管理大有助益,管理者可以方便一次管理所有的防火墙规则࿰…...
Nginx反向代理请求头有下划线_导致丢失问题处理
后端发来消息说前端已经发了但是后端没收到请求。 发现是下划线的都没收到,搜索之后发现nginx默认request的header中包含’_’时,会自动忽略掉。 解决方法是:在nginx里的nginx.conf配置文件中的http部分中添加如下配置: unders…...
【STM32+CubeMX】 新建一个工程(STM32F407)
相关文章: 【HAL库】 STM32CubeMX 教程 1 --- 下载、安装 目录 第一部分、新建工程 第二部分、工程文件解释 第三部分、编译验证工程 友情约定:本系列的前五篇,为了方便新手玩家熟悉CubeMX、Keil的使用,会详细地截图每一步Cu…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
