Python对象的序列化和反序列化工具:Joblib与Pickle
在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSON
、YAML
、Pickle
和Joblib
等。其中,Pickle
和Joblib
是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有所不同,适用于不同的场景。
本文将详细介绍Joblib
和Pickle
的区别,以及在实际应用中选择它们的考虑因素。
1. Pickle简介
Pickle
是Python标准库中的模块,专门用于对象的序列化和反序列化。它可以将Python中的大多数对象(如字典、列表、类实例等)转化为字节流,从而能够存储到磁盘或者通过网络传输,反序列化则将字节流转回原本的对象。
Pickle的特点:
- Python标准库:
pickle
是Python自带的模块,使用起来非常简单,不需要额外安装。 - 支持Python对象:支持多种Python对象,包括自定义类的实例、字典、列表等。
- 二进制和文本模式:可以选择以二进制模式或文本模式存储序列化数据。
- 可移植性差:虽然
pickle
格式在不同Python环境中能很好地工作,但它并不适用于跨语言传输或长时间存储。
Pickle使用示例
import pickle # 序列化对象
data = {'name': 'Alice', 'age': 30, 'score': [90, 95, 88]}
with open('data.pkl', 'wb') as f: pickle.dump(data, f) # 反序列化对象
with open('data.pkl', 'rb') as f: loaded_data = pickle.load(f)
print(loaded_data)
2. Joblib简介
Joblib
是一个外部库,专门用于高效地序列化和反序列化Python对象,尤其是大规模数据结构和机器学习模型。它通常在处理大型数值数组(例如NumPy
数组或scikit-learn
的机器学习模型)时表现优越。
Joblib的特点:
- 高效处理大数据:与
Pickle
相比,Joblib
更适合序列化大型数组和对象。它在存储NumPy
数组等大数据时,能够自动进行压缩,从而减少存储空间。 - 并行计算支持:
Joblib
还支持将数据存储过程分布到多个进程上,提高序列化和反序列化的速度。 - 优化的压缩算法:默认支持GZIP压缩,可以减少存储空间和加速磁盘I/O。
- 不适合小型数据:对于小型数据,
Joblib
的优势并不明显,反而可能会带来额外的开销。
Joblib使用示例
from joblib import dump, load # 序列化对象
data = {'name': 'Bob', 'age': 25, 'score': [80, 85, 89]}
dump(data, 'data.joblib') # 反序列化对象
loaded_data = load('data.joblib')
print(loaded_data)
3. Pickle与Joblib的区别
特性 | Pickle | Joblib |
---|---|---|
用途 | 通用的Python对象序列化工具 | 主要用于序列化大型数据和机器学习模型 |
支持的对象 | 适用于几乎所有Python对象(如字典、类实例等) | 优化用于NumPy 数组和scikit-learn 模型 |
性能 | 适合小型和中等大小的对象 | 对大数据(如NumPy 数组)有更好的支持 |
压缩支持 | 无内建压缩(需要手动压缩) | 默认支持压缩(如GZIP、LZ4等) |
跨语言兼容性 | 不适用于跨语言(仅适用于Python) | 不适用于跨语言(仅适用于Python) |
易用性 | Python标准库,自带 | 需要安装joblib 库 |
序列化速度 | 对于小对象较快 | 对于大型数据结构更加高效 |
存储空间 | 没有自动压缩 | 支持压缩,减少存储空间 |
4. 选择Pickle还是Joblib?
选择Pickle
还是Joblib
,通常取决于对象的大小和应用场景:
- 使用Pickle:
- 如果数据量较小或数据类型多样(如包含多个Python数据类型或自定义对象),
Pickle
是一个简洁且高效的选择。 - 适用于较简单的存储需求或对于数据量要求不高的场景。
- 如果数据量较小或数据类型多样(如包含多个Python数据类型或自定义对象),
- 使用Joblib:
- 如果需要序列化的大数据是数值型数据(如
NumPy
数组),或者是机器学习模型(如scikit-learn
的模型),Joblib
会提供更高效的性能。 - 如果数据需要压缩存储(尤其是需要处理大量的数值数据或大规模模型),
Joblib
的压缩算法能大幅减少磁盘占用。
- 如果需要序列化的大数据是数值型数据(如
5. 总结
- Pickle适合大部分常规的Python对象序列化工作,尤其是数据较小的情况。
- Joblib则更适用于处理大数据和机器学习模型,尤其是需要压缩和高效存储的场景。
通过合理选择Pickle
或Joblib
,可以使得序列化过程更加高效,并为大规模数据的存储提供支持。在机器学习、数据分析和科学计算等领域,Joblib
通常是更优的选择,而在一般的Python开发中,Pickle
仍然是一个简单、实用的工具。
相关文章:
Python对象的序列化和反序列化工具:Joblib与Pickle
在Python中,序列化是将内存中的对象转换为可存储或传输的格式的过程。常见的序列化格式有JSON、YAML、Pickle和Joblib等。其中,Pickle和Joblib是最常用的用于序列化和反序列化Python对象的工具。虽然这两者有很多相似之处,但它们在某些方面有…...
Spring Boot3 配合ProxySQL实现对 MySQL 主从同步的读写分离和负载均衡
将 ProxySQL 配合 Spring Boot 使用,主要的目的是在 Spring Boot 应用程序中实现对 MySQL 主从同步的读写分离和负载均衡。这样,你可以利用 ProxySQL 自动将写操作路由到主库,而将读操作路由到从库。 1. 准备工作 确保你的 MySQL 主从同步环…...

量子计算遇上人工智能:突破算力瓶颈的关键?
引言:量子计算遇上人工智能——突破算力瓶颈的关键? 在数字化时代的浪潮中,人工智能(AI)正以前所未有的速度改变着我们的生活,从语音助手到自动驾驶,从医学诊断到金融分析,无不彰显其…...

【Unity插件】解决移动端UI安全区问题 - Safe Area Helper
在移动端设计界面时,必须要考虑的就是UI的安全区。 Unity本身也提供了Safearea的API。 但在asset store时已经有人提供了免费的插件(Safe Area Helper),我们可以直接使用。 插件链接: https://assetstore.unity.com/p…...
JSON.stringify 实现深度克隆的缺陷
在前端开发中,深克隆(Deep Clone)和浅克隆(Shallow Clone)是常见的操作。浅克隆和深克隆的区别主要体现在对象内部嵌套对象的处理方式上。 1. 浅克隆(Shallow Clone) 浅克隆是指创建一个新对象…...

深度解析如何使用Linux中的git操作
1.如何理解版本控制 →Git&&gitee||github 多版本控制面对善变的甲方 版本控制是一种用于管理文件或代码变更的系统,帮助团队或个人追踪项目的历史记录,并支持多方协作开发。它在软件开发和文档管理中尤为重要,但也适用于其他需要追…...

el-table 合并单元格
参考文章:vue3.0 el-table 动态合并单元格 - flyComeOn - 博客园 <el-table :data"tableData" border empty-text"暂无数据" :header-cell-style"{ background: #f5f7fa }" class"parent-table" :span-method"obj…...
Redis 三大问题:缓存穿透、缓存击穿、缓存雪崩
Redis 作为高性能的内存数据库,广泛应用于缓存场景。然而,在实际使用中,可能会遇到三大经典问题:缓存穿透、缓存击穿 和 缓存雪崩。这些问题如果不加以解决,可能会导致系统性能下降甚至崩溃。 1. 缓存穿透 问题描述 …...
常用字符串处理函数
常用字符串处理函数 strcspn函数原型参数说明返回值使用示例注意事项 strpbrk函数原型参数说明返回值使用示例 strcasecmp函数原型参数说明返回值使用示例注意事项 strcspn strcspn 是一个 C 和 C 标准库函数,用于计算一个字符串中不包含任何指定字符的最长前缀的长…...

Pathview包:整合表达谱数据可视化KEGG通路
Pathview是一个用于整合表达谱数据并用于可视化KEGG通路的一个R包,其会先下载KEGG官网上的通路图,然后整合输入数据对通路图进行再次渲染,从而对KEGG通路图进行一定程度上的个性化处理,并且丰富其信息展示。(KEGG在线数…...
seleniun 自动化程序,python编程 我监控 chrome debug数据后 ,怎么获取控制台的信息呢
python 好的,使用 Python 来监控 Chrome 的调试数据并获取控制台信息,可以使用 websocket-client 库来连接 Chrome 的 WebSocket 接口。以下是一个详细的示例: 1. 安装必要的库 首先,你需要安装 websocket-client 库。可以使用…...
SQL中的数据库对象
视图:VIEW 概念 ① 虚拟表,本身不存储数据,可以看做是存储起来的SELECT语句 ② 视图中SELECT语句中涉及到的表,称为基表 ③ 针对视图做DML操作,对影响到基表中的数据,反之亦然 ④ 创建、删除视图本身&#…...

DeepSeek:性能强劲的开源模型
deepseek 全新系列模型 DeepSeek-V3 首个版本上线并同步开源。登录官网 chat.deepseek.com 即可与最新版 V3 模型对话。 性能对齐海外领军闭源模型 DeepSeek-V3 为自研 MoE 模型,671B 参数,激活 37B,在 14.8T token 上进行了预训练。 论…...

医疗可视化大屏 UI 设计新风向
智能化交互 借助人工智能与机器学习技术,实现更智能的交互功能。如通过语音指令或手势控制来操作大屏,医护人员无需手动输入,可更便捷地获取和处理信息。同时,系统能根据用户的操作习惯和数据分析,自动推荐相关的医疗…...
从企业级 RAG 到 AI Assistant , Elasticsearch AI 搜索技术实践
文章目录 01 AI 搜索落地的挑战02 Elasticsearch 向量性能 5 倍提升03 Elasticsearch 企业版 AI 能力全面解读04 阿里云 Elasticsearch 将准确率提升至 95%05 AI Assistant 集成通义千问大模型实现 AI Ops01 AI 搜索落地的挑战 在过去一年中,基座大模型技术的快速迭代推动了 …...
TypeScript语言的并发编程
TypeScript语言的并发编程 引言 随着现代应用程序的复杂性不断增加,性能和用户体验的重要性显得尤为突出。在这种背景下,并发编程应运而生,成为提升应用程序效率的重要手段。在JavaScript及其超集TypeScript中,尽管语言本身是单…...

benchANT 性能榜单技术解读 Part 1:写入吞吐
近期,国际权威数据库性能测试榜单 benchANT 更新了 Time Series: Devops(时序数据库)场景排名,KaiwuDB 数据库在 xsmall 和 small 两类规格下的时序数据写入吞吐、查询吞吐、查询延迟、成本效益等多项指标刷新榜单原有数据纪录。在…...
虚拟机防火墙管理
虚拟机防火墙管理 在网络防护方面,PVE提供了相当良好的防火墙管理功能,并且可以适用于节点实体机、客体机、让客体机内不需要另外再安装软体防火墙,对于效能与统一管理大有助益,管理者可以方便一次管理所有的防火墙规则࿰…...

Nginx反向代理请求头有下划线_导致丢失问题处理
后端发来消息说前端已经发了但是后端没收到请求。 发现是下划线的都没收到,搜索之后发现nginx默认request的header中包含’_’时,会自动忽略掉。 解决方法是:在nginx里的nginx.conf配置文件中的http部分中添加如下配置: unders…...

【STM32+CubeMX】 新建一个工程(STM32F407)
相关文章: 【HAL库】 STM32CubeMX 教程 1 --- 下载、安装 目录 第一部分、新建工程 第二部分、工程文件解释 第三部分、编译验证工程 友情约定:本系列的前五篇,为了方便新手玩家熟悉CubeMX、Keil的使用,会详细地截图每一步Cu…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

Golang——7、包与接口详解
包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
React 实战项目:微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇!在前 29 篇文章中,我们从 React 的基础概念逐步深入到高级技巧,涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

数据分析六部曲?
引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...