PySpark用sort-merge join解决数据倾斜的完整案例
假设有两个大表 table1 和 table2 ,并通过 sort-merge join 来解决可能的数据倾斜问题。
from pyspark.sql import SparkSession
from pyspark.sql.functions import col# 初始化SparkSession
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()# 加载数据,假设数据来自parquet文件
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")# 查看表的大小
print("table1 size: ", table1.count())
print("table2 size: ", table2.count())# 为了演示数据倾斜,假设我们直接使用join,这里用inner join举例
joined = table1.join(table2, table1["id"] == table2["id"], "inner")# 先对连接键进行排序,为sort-merge join做准备sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")# 使用sort-merge join进行连接
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")# 触发Action,查看执行计划,此时可以去Spark WebUI查看任务执行情况
joined.count()# 停止SparkSession
spark.stop()
代码解释
初始化SparkSession:创建一个SparkSession对象,这是与Spark交互的入口。
spark = SparkSession.builder.appName("SortMergeJoinExample").getOrCreate()
加载数据并查看表大小:从Parquet文件加载两张表,并打印出它们的行数,以此来了解表的规模。
table1 = spark.read.parquet("path/to/table1.parquet")
table2 = spark.read.parquet("path/to/table2.parquet")print("table1 size: ", table1.count())
print("table2 size: ", table2.count())
数据预处理:在进行 sort-merge join 之前,对两个表按照连接键 id 在每个分区内进行排序。
sorted_table1 = table1.sortWithinPartitions("id")
sorted_table2 = table2.sortWithinPartitions("id")
执行sort-merge join:利用排序后的表,执行 sort-merge join 操作,这里选择的是内连接。
joined = sorted_table1.join(sorted_table2, sorted_table1["id"] == sorted_table2["id"], "inner")
触发Action并查看执行情况:调用 count() 方法触发一个Action,此时Spark会真正执行整个计算流程。与此同时,可以打开Spark WebUI(通常是 http://your-spark-master:4040 ),在 Stages 页面查看任务执行计划,尤其是查看各个阶段的数据分布情况,确认数据倾斜是否得到解决。
joined.count()
停止SparkSession:任务完成后,关闭SparkSession释放资源。
spark.stop()
要在Spark WebUI中查看数据倾斜:
- 在执行 joined.count() 后,迅速打开浏览器访问Spark WebUI。进入 Stages 标签页,找到正在执行的 join 相关阶段。查看每个任务的处理数据量,如果之前存在数据倾斜,经过 sort-merge join 处理后,各个任务处理的数据量应该相对均匀。
相关文章:
PySpark用sort-merge join解决数据倾斜的完整案例
假设有两个大表 table1 和 table2 ,并通过 sort-merge join 来解决可能的数据倾斜问题。 from pyspark.sql import SparkSession from pyspark.sql.functions import col# 初始化SparkSession spark SparkSession.builder.appName("SortMergeJoinExample&quo…...
sklearn-逻辑回归-制作评分卡
目录 数据集处理 分箱 分多少个箱子合适 分箱要达成什么样的效果 对一个特征进行分箱的步骤 分箱的实现 封装计算 WOE 值和 IV值函数 画IV曲线,判断最佳分箱数量 结论 pd.qcut 执行报错 功能函数封装 判断分箱个数 在银行借贷场景中,评分卡是…...
scrapy爬取图片
scrapy 爬取图片 环境准备 python3.10scrapy pillowpycharm 简要介绍scrapy Scrapy 是一个开源的 Python 爬虫框架,专为爬取网页数据和进行 Web 抓取而设计。它的主要特点包括: 高效的抓取性能:Scrapy 采用了异步机制,能够高效…...
在 Vue 项目中使用地区级联选
在 Vue 项目中使用地区级联选择的完整流程: 1.安装依赖包,这个包提供了中国省市区的完整数据。 npm install element-china-area-data --save 2.导入数据 import { regionData } from element-china-area-data 这个包提供了几种不同的数据格式&#…...
【简博士统计学习方法】第1章:1. 统计学习的定义与分类
自用笔记 1. 统计学习的定义与分类 1.1 统计学习的概念 统计学习(Statistical Machine Learning)是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科。 以计算机和网络为平台;以数据为研究对象;以…...
利用 Python 脚本批量创建空白 Markdown 笔记
文章目录 利用 Python 脚本批量创建空白 Markdown 笔记1 背景介绍2 需求描述3 明确思路4 具体实现4.1. 遍历 toc.md 文件,收集文件名和对应的文件内容4.2. 实现文件批量生成逻辑4.3. 补全缺失的工具函数4.4. 进一步补全工具函数中的工具函数 5 脚本运行6 注意事项 利…...
【Qt】C++11 Lambda表达式
1. 举例 connect(ui->pushButton, &QPushButton::clicked, [](bool checked){//具体代码qDebug() << "Hello" << checked;}); 2. 详情 //完整形式 [ capture ] ( params ) opt -> ret { body; }; capture 是捕获列表params 是参数表opt 是函数…...
怎样提高服务器中的数据传输速度?
服务器中的数据传输速度会影响着用户的体验感,当企业中的数据传输速度出现卡顿或者是过慢时,用户不能及时浏览到所需的内容,给用户造成不好的体验感,那么企业该怎样才能提高服务器中的数据传输速度呢? 服务器之间如何传…...
Vue 封装公告滚动
文章目录 需求分析1. 创建公告组件Notice.vue2. 注册全局组件3. 使用 需求 系统中需要有一个公告展示,且这个公告位于页面上方,每个页面都要看到 分析 1. 创建公告组件Notice.vue 第一种 在你的项目的合适组件目录下(比如components目录&a…...
JVM实战—12.OOM的定位和解决
大纲 1.如何对系统的OOM异常进行监控和报警 2.如何在JVM内存溢出时自动dump内存快照 3.Metaspace区域内存溢出时应如何解决(OutOfMemoryError: Metaspace) 4.JVM栈内存溢出时应如何解决(StackOverflowError) 5.JVM堆内存溢出时应该如何解决(OutOfMemoryError: Java heap s…...
【python翻译软件V1.0】
如果不想使用密钥的形式,且需要一个直接可用的中英文翻译功能,可以使用一些免费的公共 API,如 opencc 或其他无需密钥的库,或直接用 requests 获取翻译结果。 其中,我可以给你一个简单的代码示例,使用 tra…...
Spring Boot中的依赖注入是如何工作
Spring Boot 中的依赖注入(Dependency Injection,简称 DI)是通过 Spring 框架的核心机制——控制反转(Inversion of Control,IOC)容器来实现的。Spring Boot 基于 Spring Framework,在应用中自动…...
ubuntu22.04 编译安装libvirt 10.x
环境安装 sudo apt-get update -y sudo apt-get install qemu-system-x86 bridge-utils libyajl-dev -y sudo apt-get install build-essential autoconf automake libtool -y sudo apt-get install libxml2-dev libxslt1-dev libgnutls28-dev libpciaccess-dev libnl-3-de…...
[fastadmin] 第三十四篇 FastAdmin 商城模块标签使用详解
FastAdmin 商城模块标签使用详解 一、标签基本语法 1.1 基础语法格式 {shop:goodslist flag"参数值" id"变量名" row"数量"}<!-- 循环内容 --> {/shop:goodslist}1.2 常用参数说明 flag: 商品标记筛选id: 循环变量名row: 显示数量 1.…...
(2024,LLaVA-Bench (Wilder),LLaVA-NeXT,LLaMA3,Qwen-1.5,语言模型扩展)
LLaVA-NeXT: Stronger LLMs Supercharge Multimodal Capabilities in the Wild 目录 1. 简介 2. 探索大规模语言模型的能力极限 3. LLaVA-Bench (Wilder):日常生活视觉聊天基准 4. Benchmark 结果 1. 简介 我们通过引入近期更强大的开源大语言模型(…...
IPEX-LLM开发项目过程中的技术总结和心得
IPEX-LLM开发项目过程中的技术总结和心得 在人工智能快速发展的时代,高效地开发和部署大语言模型(LLM)已成为技术人员的必备技能。在我们的项目中,我们采用了 Intel Extension for PyTorch(简称 IPEX)和 L…...
HTTP/HTTPS ②-Cookie || Session || HTTP报头
这里是Themberfue 上篇文章介绍了HTTP报头的首行信息 本篇我们将更进一步讲解HTTP报头键值对的含义~~~ ❤️❤️❤️❤️ 报头Header ✨再上一篇的学习中,我们了解了HTTP的报头主要是通过键值对的结构存储和表达信息的;我们已经了解了首行的HTTP方法和UR…...
【软考】软件设计师
「学习路线」(推荐该顺序学习,按照先易后难排序) 1、上午题—计算机系统(5~6分)[1.8; ] 2、上午题—程序设计语言(固定6分)[1.9; ] 3、下午题—试题一(15分) 4、上午题—…...
K8s Pod OOMKilled,监控却显示内存资源并未打满
1. 问题现象 pod一直重启,通过grafana查看,发现内存使用率并没有100%。 2. 排查过程 2.1 describe查看pod最新一次的状态 可以明显看到,最近一次的重启就是因为内存不足导致的。 2.2 describe 查看node节点状态 找到原因了,原来…...
C++ 原子变量
C 原子变量 文章目录 C 原子变量1. 原子变量是什么?2. 原子操作的特点3. 原子变量的作用1. 多线程安全的共享数据访问2. 替代锁机制3. 实现低级同步算法 4. 原子变量的常见操作5. 内存顺序(Memory Ordering)内存顺序控制在原子变量中的作用如…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...
网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
