C++例程:使用I/O模拟IIC接口(6)
完整的STM32F405代码工程I2C驱动源代码跟踪
一)myiic.c
#include "myiic.h"
#include "delay.h"
#include "stm32f4xx_rcc.h"
//初始化IIC
void IIC_Init(void)
{ GPIO_InitTypeDef GPIO_InitStructure;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);//使能GPIOA时钟//SCL_1->GPIOA0,SDA_1->GPIOA1GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//普通输出模式GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHzGPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化SCL_1=1;SDA_1=1;
}//产生IIC1起始信号
void IIC1_Start(void)
{SDA1_OUT(); //sda线输出SDA_1=1; SCL_1=1;delay_us(4);delay_us(4);SDA_1=0;//START:when CLK is high,DATA change form high to low delay_us(4);delay_us(4);SCL_1=0;//钳住I2C总线,准备发送或接收数据
}
//产生IIC停止信号
void IIC1_Stop(void)
{SDA1_OUT();//sda线输出SCL_1=0;SDA_1=0;//STOP:when CLK is high DATA change form low to highdelay_us(4);delay_us(4);SCL_1=1; delay_us(4);delay_us(4);SDA_1=1;//发送I2C总线结束信号delay_us(4);delay_us(4);
}
//等待应答信号到来
//返回值:1,接收应答失败
// 0,接收应答成功
u8 IIC1_Wait_Ack(void)
{u8 ucErrTime=0;SDA1_IN(); //SDA设置为输入 SDA_1=1;delay_us(1); SCL_1=1;delay_us(1); while(READ_SDA1){ucErrTime++;if(ucErrTime>250){IIC1_Stop();return 1;}}SCL_1=0;//时钟输出0 return 0;
} //产生ACK应答
void IIC1_Ack(void)
{SCL_1=0;SDA1_OUT();SDA_1=0;delay_us(2);delay_us(2);SCL_1=1;delay_us(2);delay_us(2);SCL_1=0;
}//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答
void IIC1_Send_Byte(u8 txd)
{ u8 t; SDA1_OUT(); SCL_1=0;//拉低时钟开始数据传输for(t=0;t<8;t++){ SDA_1=(txd&0x80)>>7;txd<<=1; delay_us(2); //对TEA5767这三个延时都是必须的delay_us(2);SCL_1=1;delay_us(2); delay_us(2);SCL_1=0; delay_us(2);delay_us(2);}
}
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK
u8 IIC1_Read_Byte(unsigned char ack)
{unsigned char i,receive=0;SDA1_IN();//SDA设置为输入for(i=0;i<8;i++ ){SCL_1=0; delay_us(2);delay_us(2);SCL_1=1;receive<<=1;if(READ_SDA1)receive++; delay_us(1); delay_us(1);} if (!ack)IIC1_NAck();//发送nACKelseIIC1_Ack(); //发送ACK return receive;
}
二) myiic.h
#ifndef __MYIIC_H
#define __MYIIC_H
#include "sys.h"
//
//PA1输入模式 输出模式
#define SDA1_IN() {GPIOA->MODER&=~(3<<(1*2));GPIOA->MODER|=0<<1*2;}
#define SDA1_OUT() {GPIOA->MODER&=~(3<<(1*2));GPIOA->MODER|=1<<1*2;}
//IO操作函数
#define SCL_1 PAout(0) //SCL
#define SDA_1 PAout(1) //SDA
#define READ_SDA1 PAin(1) //输入SDA
//IIC所有操作函数
void IIC_Init(void); //初始化IIC的IO口
void IIC1_Start(void); //发送IIC开始信号
void IIC1_Stop(void); //发送IIC停止信号
void IIC1_Send_Byte(u8 txd); //IIC发送一个字节
u8 IIC1_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 IIC1_Wait_Ack(void); //IIC等待ACK信号
void IIC1_Ack(void); //IIC发送ACK信号
void IIC1_NAck(void); //IIC不发送ACK信号
void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
u8 IIC_Read_One_Byte(u8 daddr,u8 addr);
#endif
三) sys.h
#ifndef __SYS_H
#define __SYS_H
#include "stm32f4xx.h"
//
//位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).M4同M3类似,只是寄存器地址变了.
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
//IO口地址映射
#define GPIOA_ODR_Addr (GPIOA_BASE+20) //0x40020014
#define GPIOA_IDR_Addr (GPIOA_BASE+16) //0x40020010
//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入
#endif
四)stm32f4xx.h
#ifndef __STM32F4xx_H
#define __STM32F4xx_H#ifdef __cplusplusextern "C" {
#endif /* __cplusplus */typedef struct
{/*!< GPIO port mode register, Address offset: 0x00 */__IO uint32_t MODER; /*!< GPIO port output type register, Address offset: 0x04 */__IO uint32_t OTYPER; /*!< GPIO port output speed register, Address offset: 0x08 */ __IO uint32_t OSPEEDR; /*!< GPIO port pull-up/pull-down register, Address offset: 0x0C */__IO uint32_t PUPDR; /*!< GPIO port input data register, Address offset: 0x10 */__IO uint32_t IDR; /*!< GPIO port output data register, Address offset: 0x14 */ __IO uint32_t ODR; /*!< GPIO port bit set/reset low register, Address offset: 0x18 */ __IO uint16_t BSRRL; /*!< GPIO port bit set/reset high register, Address offset: 0x1A */ __IO uint16_t BSRRH; /*!< GPIO port configuration lock register, Address offset: 0x1C */ __IO uint32_t LCKR; /*!< GPIO alternate function registers, Address offset: 0x20-0x24 */__IO uint32_t AFR[2];
} GPIO_TypeDef;
/*!< Peripheral base address in the alias region */
#define PERIPH_BASE ((uint32_t)0x40000000)
/*!< Peripheral memory map */
#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000)
/*!< AHB1 peripherals */
#define GPIOA_BASE (AHB1PERIPH_BASE + 0x0000)#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)#ifdef __cplusplus
}
#endif /* __cplusplus */#endif /* __STM32F4xx_H */
五)stm32f4xx_rcc.h
#ifndef __STM32F4xx_RCC_H
#define __STM32F4xx_RCC_H#ifdef __cplusplusextern "C" {
#endif#define RCC_AHB1Periph_GPIOD ((uint32_t)0x00000008)void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState);#ifdef __cplusplus
}
#endif#endif /* __STM32F4xx_RCC_H */
六)stm32f4xx_rcc.c
#include "stm32f4xx_rcc.h"
/*** @brief Enables or disables the AHB1 peripheral clock.* @note After reset, the peripheral clock (used for registers read/write access)* is disabled and the application software has to enable this clock before * using it. * @param RCC_AHBPeriph: specifies the AHB1 peripheral to gates its clock.* This parameter can be any combination of the following values:* @arg RCC_AHB1Periph_GPIOA: GPIOA clock* @arg RCC_AHB1Periph_GPIOB: GPIOB clock * @arg RCC_AHB1Periph_GPIOC: GPIOC clock* @arg RCC_AHB1Periph_GPIOD: GPIOD clock* @arg RCC_AHB1Periph_GPIOE: GPIOE clock* @arg RCC_AHB1Periph_GPIOF: GPIOF clock* @arg RCC_AHB1Periph_GPIOG: GPIOG clock* @arg RCC_AHB1Periph_GPIOG: GPIOG clock* @arg RCC_AHB1Periph_GPIOI: GPIOI clock* @arg RCC_AHB1Periph_GPIOJ: GPIOJ clock (STM32F42xxx/43xxx devices) * @arg RCC_AHB1Periph_GPIOK: GPIOK clock (STM32F42xxx/43xxx devices) * @arg RCC_AHB1Periph_CRC: CRC clock* @arg RCC_AHB1Periph_BKPSRAM: BKPSRAM interface clock* @arg RCC_AHB1Periph_CCMDATARAMEN CCM data RAM interface clock* @arg RCC_AHB1Periph_DMA1: DMA1 clock* @arg RCC_AHB1Periph_DMA2: DMA2 clock* @arg RCC_AHB1Periph_DMA2D: DMA2D clock (STM32F429xx/439xx devices) * @arg RCC_AHB1Periph_ETH_MAC: Ethernet MAC clock* @arg RCC_AHB1Periph_ETH_MAC_Tx: Ethernet Transmission clock* @arg RCC_AHB1Periph_ETH_MAC_Rx: Ethernet Reception clock* @arg RCC_AHB1Periph_ETH_MAC_PTP: Ethernet PTP clock* @arg RCC_AHB1Periph_OTG_HS: USB OTG HS clock* @arg RCC_AHB1Periph_OTG_HS_ULPI: USB OTG HS ULPI clock* @param NewState: new state of the specified peripheral clock.* This parameter can be: ENABLE or DISABLE.* @retval None*/
void RCC_AHB1PeriphClockCmd(uint32_t RCC_AHB1Periph, FunctionalState NewState)
{/* Check the parameters */assert_param(IS_RCC_AHB1_CLOCK_PERIPH(RCC_AHB1Periph));assert_param(IS_FUNCTIONAL_STATE(NewState));if (NewState != DISABLE){RCC->AHB1ENR |= RCC_AHB1Periph;}else{RCC->AHB1ENR &= ~RCC_AHB1Periph;}
}
七)delay.h
#ifndef __DELAY_H
#define __DELAY_H
#include <sys.h>
void delay_init(u8 SYSCLK);
void delay_ms(u16 nms);
void delay_us(u32 nus);#endif
相关文章:
C++例程:使用I/O模拟IIC接口(6)
完整的STM32F405代码工程I2C驱动源代码跟踪 一)myiic.c #include "myiic.h" #include "delay.h" #include "stm32f4xx_rcc.h" //初始化IIC void IIC_Init(void) { GPIO_InitTypeDef GPIO_InitStructure;RCC_AHB1PeriphCl…...
58.在 Vue 3 中使用 OpenLayers 绘制点、线、圆、多边形
前言 在现代 Web 开发中,地图功能已经成为许多应用的重要组成部分。OpenLayers 是一个强大的开源地图库,支持多种地图源和地图操作。结合 Vue 3 的响应式特性,我们可以轻松实现地图的交互功能。本文将详细介绍如何在 Vue 3 中使用 OpenLayer…...
如何快速上手一个鸿蒙工程
作为一名鸿蒙程序猿,当你换了一家公司,或者被交接了一个已有的业务。前辈在找你之前十分钟写了一个他都看不懂的交接文档,然后把一个鸿蒙工程交接给你了,说以后就是你负责了。之后几天你的状态大概就是下边这样的,一堆…...
c++入门之 命名空间与输入输出
1、命名空间 1.1使用命名空间的原因 先看一个例子: #include <iostream>int round 0;int main() {printf("%d", round);return 0; }请问,这个程序能跑起来吗? 答案是否定的 原因是,当我们想创建一个全局变量 …...
GRE技术的详细解释
GRE(Generic Routing Encapsulation,通用路由封装)是一种隧道协议,主要用于在不同网络之间封装和传输其他网络层协议的数据包。它最常用于在IP网络上建立虚拟点到点的隧道连接,是实现VPN的一项关键技术。 下面从原理、…...
Mysql--基础篇--多表查询(JOIN,笛卡尔积)
在MySQL中,多表查询(也称为联表查询或JOIN操作)是数据库操作中非常常见的需求。通过多表查询,你可以从多个表中获取相关数据,并根据一定的条件将它们组合在一起。MySQL支持多种类型的JOIN操作,每种JOIN都有…...
Java 泛型的用法
1. 泛型类 泛型类是指在类定义时使用类型参数来指定类的类型。这样可以在类的内部使用这些类型参数来定义字段、方法的返回类型和参数类型。 public class Box<T> {private T t;public void set(T t) {this.t t;}public T get() {return t;} }在这个例子中,…...
人工智能与物联网:智慧城市的未来
引言 清晨6点,智能闹钟根据你的睡眠状态和天气情况,自动调整叫醒时间;窗帘缓缓打开,阳光洒满房间;厨房里的咖啡机已经为你准备好热饮,而无人驾驶公交车正按时抵达楼下站点。这不是科幻电影的场景ÿ…...
Python标准库之SQLite3
包含了连接数据库、处理数据、控制数据、自定义输出格式及处理异常的各种方法。 官方文档:sqlite3 --- SQLite 数据库的 DB-API 2.0 接口 — Python 3.13.1 文档 官方文档SQLite对应版本:3.13.1 SQLite主页:SQLite Home Page SQL语法教程&a…...
力扣 二叉树的最大深度
树的遍历,dfs与bfs基础。 题目 注意这种题要看根节点的深度是0还是1。 深度优先遍历dfs,通过递归分别计算左子树和右子树的深度,然后返回左右子树深度的最大值再加上 1。递归会一直向下遍历树,直到达到叶子节点或空节点。在回溯…...
Linux_进程间通信_共享内存
什么是共享内存? 对于两个进程,通过在内存开辟一块空间(操作系统开辟的),进程的虚拟地址通过页表映射到对应的共享内存空间中,进而实现通信;物理内存中的这块空间,就叫做共享内存。…...
ubuntu 下生成 core dump
在Ubuntu下,发现程序崩溃后不生成core dump文件, 即使设置了ulimit -c unlimited后仍然无效。 1.ulimit -c unlimited 输出的的含义是核心转储文件的大小限制,单位是blocks,默认是0,表示不生成core dump文件。 2. 重设core_pattern ulimit -c unlimited后,核心转储文件…...
学习HLS.js
前言 HTTP 实时流(也称为HLS(.m3u8))是一种基于HTTP的自适应比特率流通信协议。HLS.js依靠HTML5视频和MediaSource Extensions进行播放,其特点:视频点播和直播播放列表、碎片化的 MP4 容器、加密媒体扩展 …...
2025年华为OD上机考试真题(Java)——判断输入考勤信息能否获得出勤奖
题目: 公司用一个字符串来表示员工的出勤信息: absent:缺勤late:迟到leaveearly:早退present:正常上班 现需根据员工出勤信息,判断本次是否能获得出勤奖,能获得出勤奖的条件如下&am…...
空对象模式
在空对象模式(Null Object Pattern)中,一个空对象取代 NULL 对象实例的检查。Null 对象不是检查空值,而是反应一个不做任何动作的关系。这样的 Null 对象也可以在数据不可用的时候提供默认的行为。 在空对象模式中,我…...
开启Excel导航仪,跨表跳转不迷路-Excel易用宝
都2025年了,汽车都有导航了,你的表格还没有导航仪吗?那也太OUT了。 面对着一个工作簿中有N多个工作表,工作表中又有超级表,数据透视表,图表等元素,如何快速的切换跳转到需要查看的数据呢&#…...
年度技术突破奖|中兴微电子引领汽车芯片新变革
随着以中央计算区域控制为代表的新一代整车电子架构逐步成为行业主流,车企在电动化与智能化之后,正迎来以架构创新为核心的新一轮技术竞争。中央计算SoC,作为支撑智驾和智舱高算力需求的核心组件,已成为汽车电子市场的重要新增量。…...
Ubuntu 如何查看盘是机械盘还是固态盘
在 Ubuntu 系统中,您可以通过以下方法来确定硬盘是机械硬盘(HDD)还是固态硬盘(SSD): 使用 lsblk 命令: 打开终端,输入以下命令: lsblk -d -o name,rota该命令将列出所…...
计算机网络(三)——局域网和广域网
一、局域网 特点:覆盖较小的地理范围;具有较低的时延和误码率;使用双绞线、同轴电缆、光纤传输,传输效率高;局域网内各节点之间采用以帧为单位的数据传输;支持单播、广播和多播(单播指点对点通信…...
STM32F4分别驱动SN65HVD230和TJA1050进行CAN通信
目录 一、CAN、SN65HVD230DR二、TJA10501、TJA1050 特性2、TJA1050 引脚说明 三、硬件设计1、接线说明2、TJA1050 模块3、SN65HVD230 模块 四、程序设计1、CAN_Init:CAN 外设初始化函数2、CAN_Send_Msg、CAN_Receive_Msg 五、功能展示1、接线图2、CAN 数据收发测试 …...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构
React 实战项目:微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇!在前 29 篇文章中,我们从 React 的基础概念逐步深入到高级技巧,涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...
