当前位置: 首页 > news >正文

2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)

问题1:产业关联性分析

question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读:

% 问题1:分析中国主要产业之间的相互关系function question1()% 清空工作区和命令窗口clear;clc;% 设置中文显示set(0,'DefaultAxesFontName','宋体');set(0,'DefaultTextFontName','宋体');% 定义产业名称industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};n = length(industries);% 创建相关系数矩阵(示例数据)rng(42); % 设置随机种子以保证结果可重复correlation_matrix = rand(n);% 确保矩阵对称correlation_matrix = (correlation_matrix + correlation_matrix')/2;% 对角线设为1correlation_matrix(logical(eye(n))) = 1;% 创建热力图figure('Position', [100, 100, 800, 600]);h = heatmap(industries, industries, correlation_matrix);h.Title = '中国主要产业相关性分析';h.XLabel = '产业';h.YLabel = '产业';% 保存图片saveas(gcf, 'problem_1_industry_correlation.png');% 输出分析结果fprintf('产业相关性分析完成,热力图已保存为"problem_1_industry_correlation.png"\n');% 显示相关系数矩阵fprintf('\n相关系数矩阵:\n');disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 产业名称定义:使用 cell 数组存储产业名称,便于后续操作。
  2. 随机相关系数矩阵:使用 rand 函数生成一个随机矩阵,并通过对称化处理确保矩阵的对称性。
  3. 对角线处理:将对角线元素设为1,表示产业与自身的完全相关性。
  4. 可视化:使用 heatmap 函数生成热力图,直观展示产业间的相关性。

问题2:投资-GDP关系模型

question2.m 文件中,我们建立了投资与GDP之间的关系模型。以下是代码的详细解读:

% 问题2:建立投资与GDP之间的关系模型function question2()% 清空工作区和命令窗口clear;clc;% 设置中文显示set(0,'DefaultAxesFontName','宋体');set(0,'DefaultTextFontName','宋体');% 定义产业名称industries = {'农林牧渔业', '工业', '建筑业', '金融业', '房地产业', '服务业'};n = length(industries);% 创建相关系数矩阵(示例数据)rng(42); % 设置随机种子以保证结果可重复correlation_matrix = rand(n);% 确保矩阵对称correlation_matrix = (correlation_matrix + correlation_matrix')/2;% 对角线设为1correlation_matrix(logical(eye(n))) = 1;% 创建热力图figure('Position', [100, 100, 800, 600]);h = heatmap(industries, industries, correlation_matrix);h.Title = '中国主要产业相关性分析';h.XLabel = '产业';h.YLabel = '产业';% 保存图片saveas(gcf, 'problem_2_industry_correlation.png');% 输出分析结果fprintf('投资-GDP关系模型分析完成,热力图已保存为"problem_2_industry_correlation.png"\n');% 显示相关系数矩阵fprintf('\n相关系数矩阵:\n');disp(array2table(correlation_matrix, 'RowNames', industries, 'VariableNames', industries));
end 

代码解读:

  1. 数据模拟:使用 normrnd 函数生成正态分布的模拟投资数据,代表不同产业的投资额。
  2. 输入矩阵构建:将各产业的投资数据组合成输入矩阵 X,用于回归分析。
  3. GDP数据模拟:通过线性组合投资数据生成模拟GDP数据,并加入随机噪声。
  4. 线性回归模型:使用 fitlm 函数建立多元线性回归模型,分析投资对GDP的影响。
  5. 模型评估:输出R方值和各产业投资对GDP的影响系数,评估模型的拟合效果。

获取完整代码

查看后续第三、四、五小题完整代码,请访问:

  • (内容实时更新)2025年第三届“华数杯”国际大学生数学建模竞赛B题完整代码【含Matlab/Python版本】

相关文章:

2025年第三届“华数杯”国际赛B题解题思路与代码(Matlab版)

问题1:产业关联性分析 在 question1.m 文件中,我们分析了中国主要产业之间的相互关系。以下是代码的详细解读: % 问题1:分析中国主要产业之间的相互关系function question1()% 清空工作区和命令窗口clear;clc;% 设置中文显示set…...

小米路由器IPv6 功能使用指南

本文不限于多层路由使用IPv6 的情况,提供解决IPv6 无法获取的更硬核的方法,需要有ssh 工具。(无安卓设备,测试环境win、mac、ios) 首先明确一点,就是如果想让你的设备得到GUA 地址,即访问 6.i…...

k8s dashboard离线部署步骤

确定k8s版本,以1.23为例。 部署metrics-server服务,最好用v0.5.2。 用v0.6.0,可能会报以下错误: nodekubemaster:~/Desktop/metric$ kubectl top nodes Error from server (ServiceUnavailable): the server is currently unabl…...

Wireshark抓包教程(2024最新版个人笔记)

改内容是个人的学习笔记 Wireshark抓包教程(2024最新版)_哔哩哔哩_bilibili 该课程笔记1-16 wireshark基础 什么是抓包工具:用来抓取数据包的一个软件 wireshark的功能:用来网络故障排查;用来学习网络技术 wireshark下…...

稀疏矩阵:BM25;稠密矩阵:RoBERTa - wwm - ext顺序

稀疏矩阵:BM25;稠密矩阵:RoBERTa - wwm - ext顺序 先后顺序 先BM25后RoBERTa - wwm - ext: 流程说明:首先可以使用BM25进行初步的检索。由于BM25是基于词频等统计信息的检索模型,它能够快速地从大规模文档集合中筛选出可能包含相关信息的文档子集。例如,在一个包含大量新…...

C# 结构体(Struct)

C# 结构体(Struct) 引言 在C#编程语言中,结构体(Struct)是一种值类型,它允许用户自定义数据类型。结构体可以包含多个成员,如字段、属性、构造函数和方法。与类(Class)相似,但结构体在内存管理、性能和继承方面有其独特的特点。本文将详细介绍C#结构体的概念、用法…...

Homestyler 和 Tripo AI 如何利用人工智能驱动的 3D 建模改变定制室内设计

让设计梦想照进现实 在Homestyler,我们致力于为每一个梦想设计师提供灵感的源泉,而非挫折。无论是初学者打造第一套公寓,或是专业设计师展示作品集,我们的直观工具都能让您轻松以惊人的3D形式呈现空间。 挑战:实现定制设计的新纪元 我们知道,将个人物品如传家宝椅子、…...

Python的pandas库基础知识(超详细教学)

目录 一、配置环境 二、序列和数据表 2.1 初始化 2.2 获取数值 2.3 获取索引 2.4 索引取内容 2.5 索引改变取值 2.6 字典生成序列 2.7 计算取值出现次数 2.8 数据表 2.9 数据表添加新变量 2.10 获取列名 2.11 根据列名获取数据 2.12 输出固定行 2.13 输出多行…...

【数据库】一、数据库系统概述

文章目录 一、数据库系统概述1 基本概念2 现实世界的信息化过程3 数据库系统内部体系结构4 数据库系统外部体系结构5 数据管理方式 一、数据库系统概述 1 基本概念 数据:描述事物的符号记录 数据库(DB):长期存储在计算机内的、…...

大数据智能选课系统

1.产品介绍 产品名称:大数据智能选课系统 一、产品概述 随着信息技术的快速发展,大数据技术在教育领域的应用越来越广泛。针对当前高校选课过程中的繁琐操作、资源分配不均等问题,我们研发了一款基于大数据智能分析的选课系统。本系统旨在…...

esp32开发笔记之一:esp32开发环境搭建vscode+ubuntu

最近想用esp32做一个物联网项目,踩坑N个终于有点心得,写下来避免和我一样的小白踩无谓的坑。 写在前面: 第一,大家一定要用linux系统作为编译工具,速度上是windows无法比的,不要因为不熟悉linux而选择win…...

赛灵思(Xilinx)公司Artix-7系列FPGA

苦难从不值得歌颂,在苦难中萃取的坚韧才值得珍视; 痛苦同样不必美化,从痛苦中开掘出希望才是壮举。 没有人是绝对意义的主角, 但每个人又都是自己生活剧本里的英雄。滑雪,是姿态优雅的“贴地飞行”,也有着成…...

Trie树算法

Trie树,也称为前缀树或字典树,是一种特殊的树型数据结构。它用于存储一组字符串,使得查找、插入和删除字符串的操作非常高效。类似这种, 模板: 这是用数组来模拟上图中的树的结构,逻辑上和上图结构一致。 …...

NLTK分词以及处理方法

在自然语言处理(NLP)的领域中,文本的处理是一个基础且核心的环节,特别是在大规模数据分析和文本挖掘中。无论是聊天机器人、情感分析,还是机器翻译,分词都是必不可少的步骤之一。分词的目的是将长篇的文本拆解为较小的单位(如单词或句子),这些单位是后续分析和处理的基…...

vue3树形组件+封装+应用

文章目录 概要应用场景代码注释综合评价注意事项功能拓展代码说明概要 创建一个基于Vue 3的树形结构组件,用于展示具有层级关系的数据,并提供了节点展开/折叠、点击等交互功能。以下是对其应用场景、代码注释以及综合评价和注意事项的详细说明。 应用场景 这个组件适用于需…...

kotlin项目无法访问Java类的问题

使用IntelliJ创建一个Kotlin项目,然后在src/main/kotlin中创建一个java接口:Animal.java,然后在Main.kt中打印这个java接口,如下: fun main() {println(Animal::class.java) }代码在编辑器中并没有报错,但…...

计算机网络 (30)多协议标签交换MPLS

前言 多协议标签交换(Multi-Protocol Label Switching,MPLS)是一种在开放的通信网上利用标签引导数据高速、高效传输的新技术。 一、基本概念 MPLS是一种第三代网络架构技术,旨在提供高速、可靠的IP骨干网络交换。它通过将IP地址映…...

qt-C++笔记之自定义继承类初始化时涉及到parents的初始化

qt-C笔记之自定义继承类初始化时涉及到parents的初始化 code review! 参考笔记 1.qt-C笔记之父类窗口、父类控件、对象树的关系 2.qt-C笔记之继承自 QWidget和继承自QObject 并通过 getWidget() 显示窗口或控件时的区别和原理 3.qt-C笔记之自定义类继承自 QObject 与 QWidget …...

人才选拔中,如何优化面试流程

在与某大型央企的深入交流中,随着该企业的不断壮大与业务扩张,对技术人才的需求急剧上升,尽管企业加大了招聘力度并投入了大量资源,但招聘成效却不尽如人意。经过项目组细致调研与访谈,问题的根源逐渐浮出水面&#xf…...

2501wtl,皮肤技术

下载地址 设计目标 最重要的是使用方便,已有程序创建一个COM对象,调一个方法就可把界面外观全部改成Mac风格的. 另外一个目标是要有扩展性. 所以,基本设计是定义一个统一的接口,然后用不同实现.每一个实现单独放在一个COMDLL中,调用者选择一个类标创建对象就行了. 接口的定义…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...

Springboot 高校报修与互助平台小程序

一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,高校报修与互助平台小程序被用户普遍使用,为…...

Neo4j 完全指南:从入门到精通

第1章:Neo4j简介与图数据库基础 1.1 图数据库概述 传统关系型数据库与图数据库的对比图数据库的核心优势图数据库的应用场景 1.2 Neo4j的发展历史 Neo4j的起源与演进Neo4j的版本迭代Neo4j在图数据库领域的地位 1.3 图数据库的基本概念 节点(Node)与关系(Relat…...