【Pandas】pandas Series rdiv
Pandas2.2 Series
Binary operator functions
| 方法 | 描述 |
|---|---|
| Series.add() | 用于对两个 Series 进行逐元素加法运算 |
| Series.sub() | 用于对两个 Series 进行逐元素减法运算 |
| Series.mul() | 用于对两个 Series 进行逐元素乘法运算 |
| Series.div() | 用于对两个 Series 进行逐元素除法运算 |
| Series.truediv() | 用于执行真除法(即浮点数除法)操作 |
| Series.floordiv() | 用于执行地板除法(即整数除法)操作 |
| Series.mod() | 用于执行逐元素的取模运算 |
| Series.pow() | 用于执行逐元素的幂运算 |
| Series.radd() | 用于执行反向逐元素加法运算 |
| Series.rsub() | 用于执行反向逐元素减法运算 |
| Series.rmul() | 用于执行反向逐元素乘法运算 |
| Series.rdiv() | 用于执行反向逐元素除法运算 |
pandas.Series.rdiv
pandas.Series.rdiv 是 Pandas 库中 Series 对象的一个方法,用于执行反向逐元素除法运算。反向除法运算意味着将当前 Series 中的每个元素与另一个 Series、标量或其他可迭代对象中的对应元素进行除法运算,但顺序是反向的。具体来说,s1.rdiv(s2) 等价于 s2 / s1。
参数说明
other: 另一个Series、标量或其他可迭代对象,用于执行除法运算。level: 如果两个Series对象的索引是多重索引,则可以指定在哪个级别进行对齐。fill_value: 如果在对齐过程中出现缺失值(NaN),可以使用fill_value指定一个值来填充这些缺失值,从而避免产生 NaN 结果。axis: 指定操作的轴,默认为 0。
返回值
返回一个新的 Series 对象,其中包含反向逐元素除法运算的结果。
示例
示例1: 标量反向除法
import pandas as pds = pd.Series([1, 2, 3, 4])
result = s.rdiv(10)
print(result)
输出:
0 10.000000
1 5.000000
2 3.333333
3 2.500000
dtype: float64
示例2: Series 反向除法
import pandas as pds1 = pd.Series([1, 2, 3, 4])
s2 = pd.Series([10, 20, 30, 40])
result = s1.rdiv(s2)
print(result)
输出:
0 10.0
1 10.0
2 10.0
3 10.0
dtype: float64
示例3: 使用 fill_value 处理缺失值
import pandas as pd
import numpy as nps1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'])
result = s1.rdiv(s2, fill_value=1)
print(result)
输出:
a 10.00
b 10.00
c 10.00
d 0.25
dtype: float64
在这个例子中,s2 没有索引 'd',因此在对齐时 s2['d'] 被视为缺失值,并用 fill_value 指定的值 1 来代替,从而计算出 30。
示例4: 索引不匹配的反向除法
import pandas as pds1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([10, 20, 30], index=['b', 'c', 'd'])
result = s1.rdiv(s2)
print(result)
输出:
a NaN
b 5.000000
c 6.666667
d 7.500000
dtype: float64
在这个例子中,s1 和 s2 的索引不完全匹配,未对齐的索引位置结果为 NaN。
通过这些示例,可以看到 pandas.Series.rdiv 方法在处理 Series 之间的反向逐元素除法运算时的强大功能和灵活性。
相关文章:
【Pandas】pandas Series rdiv
Pandas2.2 Series Binary operator functions 方法描述Series.add()用于对两个 Series 进行逐元素加法运算Series.sub()用于对两个 Series 进行逐元素减法运算Series.mul()用于对两个 Series 进行逐元素乘法运算Series.div()用于对两个 Series 进行逐元素除法运算Series.true…...
线程安全问题介绍
文章目录 **什么是线程安全?****为什么会出现线程安全问题?****线程安全问题的常见场景****如何解决线程安全问题?**1. **使用锁**2. **使用线程安全的数据结构**3. **原子操作**4. **使用volatile关键字**5. **线程本地存储**6. **避免死锁*…...
为AI聊天工具添加一个知识系统 之27 支持边缘计算设备的资源存储库及管理器
本文问题 现在我们回到 ONE/TWO/TREE 的资源存储库 的设计--用来指导 足以 支持 本项目(为AI聊天工具增加一套知识系统)的 核心能力 “语言处理” 中 最高难度系数的“自然语言处理” 中最具挑战性的“含糊性” 问题的解决。--因为足以解决 自然语言中最…...
初识verilog HDL
为什么选择用Verilog HDL开发FPGA??? 硬件描述语言(Hardware Descriptipon Lagnuage,HDL)通过硬件的方式来产生与之对应的真实的硬件电路,最终实现所设计的预期功能,其设计方法与软件…...
VS2015 + OpenCV + OnnxRuntime-Cpp + YOLOv8 部署
近期有个工作需求是进行 YOLOv8 模型的 C 部署,部署环境如下 系统:WindowsIDE:VS2015语言:COpenCV 4.5.0OnnxRuntime 1.15.1 0. 预训练模型保存为 .onnx 格式 假设已经有使用 ultralytics 库训练并保存为 .pt 格式的 YOLOv8 模型…...
Notepad++上NppFTP插件的安装和使用教程
一、NppFTP插件下载 图示是已经安装好了插件。 在搜索框里面搜NppFTP,一般情况下,自带的下载地址容易下载失败。这里准备了一个下载连接:Release v0.29.10 ashkulz/NppFTP GitHub 这里我下载的是x86版本 下载好后在nodepad的插件里面选择打…...
Kotlin | Android Provider 的实现案例
目标 使用 Android Room 实现持久化库。 代码 Kotlin 代码编写 DemoDatabase,在build生成 DemoDatabase_Impl 疑问 Provider的数据会存在设备吗? 内部存储: 当使用 Room 创建数据库(如 DemoDatabase),数据库文件通常…...
频域自适应空洞卷积FADC详解
定义与原理 在探讨FADC的核心策略之前,我们需要深入了解其定义和工作原理。FADC是一种创新性的卷积技术,旨在克服传统空洞卷积的局限性。其核心思想是从 频谱分析的角度 改进空洞卷积,通过 动态调整膨胀率 来平衡有效带宽和感受野大小。 FADC的工作原理可以从以下几个方面…...
Edge浏览器内置的截长图功能
Edge浏览器内置截图功能 近年来,Edge浏览器不断更新和完善,也提供了长截图功能。在Edge中,只需点击右上角的“...”,然后选择“网页捕获”->“捕获整页”,即可实现长截图。这一功能的简单易用,使其成为…...
GAN的应用
5、GAN的应用 GANs是一个强大的生成模型,它可以使用随机向量生成逼真的样本。我们既不需要知道明确的真实数据分布,也不需要任何数学假设。这些优点使得GANs被广泛应用于图像处理、计算机视觉、序列数据等领域。上图是基于GANs的实际应用场景对不同G…...
Math Reference Notes: 希腊字母表
希腊字母(Greek alphabet)是古希腊语使用的字母系统,也是西方字母系统的先驱之一,广泛应用于现代数学、物理学、工程学以及各种科学领域。希腊字母有24个字母,它们分为大写和小写两种形式。 1. Alpha (Α, α) 发音&a…...
高通,联发科(MTK)等手机平台调优汇总
一、常见手机型号介绍: ISP除了用在安防行业,还有手机市场,以及目前新型的A/VR眼睛,机器3D视觉机器人,医疗内窥镜这些行业。 下面是一些最近几年发布的,,,旗舰SOC型号: 1.联发科:天玑92…...
Rust语言使用iced实现简单GUI页面
使用cargo新建一个rust项目 cargo new gui_demo cd gui_demo 编辑Cargo.toml文件 ,添加iced依赖 [package] name "gui_demo" version "0.1.0" edition "2021"[dependencies] iced "0.4.2" 编辑src/main.rs文件: u…...
使用wav2vec 2.0进行音位分类任务的研究总结
使用wav2vec 2.0进行音位分类任务的研究总结 原文名称: Using wav2vec 2.0 for phonetic classification tasks: methodological aspects 研究背景 自监督学习在语音中的应用 自监督学习在自动语音识别任务中表现出色,例如说话人识别和验证。变换器模型…...
25/1/11 嵌入式笔记<esp32> 初入esp32
用Arduino平台,学习了点亮led灯。 //定义LED引脚 int led_pin 12;void setup() {//设定引脚为输出模式pinMode(led_pin,OUTPUT):}void loop() {// 点亮LED:digitalWrite(led_pin,HIGH);//延时1sdelay(1000);//熄灭LEDdigitalWrite(led_pin,LOW)://延时…...
基于SMT32U575RIT单片机-中断练习
任务 查看手册对所有的拓展板上和相对应的底板的引脚对应的端口找到以下结论 通过STM32MX软件对各个引脚进行相应的配置 1.第一种切换模式电脑发送 #include "main.h" #include "icache.h" #include "usart.h" #include "gpio.h"/*…...
在Django的Serializer的列表数据中剔除指定元素
【Python工作随笔】 提问 如何在List序列化方法中剔除不要的元素,例如在成绩中剔除0 class BasicDescriptionSubjectBoxPlotSerializer(serializers.Serializer):语文 serializers.ListField(sourcescore_chinese)数学 serializers.ListField(sourcescore_math…...
我喜欢的数学题
偏向抖机灵性质的,考察理解的,而不是比拼计算量的,可能跟现在岁数大了算不明白了多少有点关系吧。 高高手,别太重计算,给普通孩子留条路。就算将来真的理工治国,也没必要都往人形计算机方面引导。毕竟你未来…...
Redis解决热key问题
当Redis遇到热key问题时,即某个或某些key被频繁访问,可能导致单个Redis节点负载过高,影响整个系统性能。以下是一些常见的解决方案: 1. 缓存预热与复制 缓存预热:在系统启动阶段,将热key对应的value预先加…...
【git】-2 分支管理
目录 一、分支的概念 二、查看、创建、切换分支 1、查看分支-git branch 2、创建分支- git branch 分支名 3、切换分支- git checkout 分支名 三、git指针 -实现分支和版本间的切换 四、普通合并分支 git merge 文件名 五、冲突分支合并 【git】-初始gi…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
