Table-Augmented Generation(TAG):Text2SQL与RAG的升级与超越
当下AI与数据库的融合已成为推动数据管理和分析领域发展的重要力量。传统的数据库查询方式,如结构化查询语言(SQL),要求用户具备专业的数据库知识,这无疑限制了非专业人士对数据的访问和利用。为了打破这一壁垒,AI驱动的数据库查询方法应运而生,其中Text2SQL和检索增强生成(RAG)(微软最新研究:RAG(Retrieval-Augmented Generation)的四个级别深度解析)是两种具有代表性的技术。然而,这两种方法在实际应用中均存在局限性,促使研究人员探索更为强大和灵活的框架。今天我们一起了解一下表增强生成(TAG),并探讨其在AI驱动数据库查询领域的潜力和未来研究方向。
一、现有方法的局限性
Text2SQL的局限
Text2SQL方法的核心在于将用户的自然语言查询转换为可执行的SQL语句,从而在关系型数据库上执行查询。这种方法在处理与结构化数据直接相关的查询时表现出色,但在面对需要外部世界知识或语义推理的复杂用户请求时则显得力不从心。根据研究人员的观点,现实世界的业务查询通常涉及以下四个方面:
- 领域知识
这部分知识由数据库本身覆盖。
- 世界知识
这需要语言模型理解外部信息。
- 精确计算
数据库系统能够高效地处理这类任务。
- 语义推理
这需要高级语言模型的能力。
Text2SQL的主要局限在于其无法充分利用语言模型的广泛知识和推理能力。因此,当查询需要推理或世界知识时,Text2SQL方法的准确性通常较低(在基准测试中约为20%)。
RAG的局限
RAG方法结合了基于检索的技术和语言模型,通过以下步骤工作:
-
使用嵌入技术检索相关数据记录。
-
基于检索到的数据生成响应。
虽然RAG(Multi-Agentic RAG:探索智能问答系统的新边界(含代码))在处理点查找方面表现良好,但它缺乏执行涉及大型数据集上计算的复杂查询的能力,如聚合、排名或迭代推理。此外,RAG往往过度依赖语言模型来处理更适合数据库系统的任务,导致结果易出错且效率低下。
二、Table-Augmented Generation(TAG)的引入
鉴于Text2SQL和RAG的局限性,加州大学伯克利分校和斯坦福大学的研究人员提出了一种新的框架——表增强生成(TAG)。TAG(表格增强生成 TAG(Table Augmented Generation):大模型与数据库融合的新思路)旨在统一语言模型和数据库系统的优势,为回答复杂自然语言查询提供一个通用解决方案。
TAG的关键步骤
TAG框架包含三个关键步骤:查询合成、查询执行和答案生成。
1、查询合成
查询合成的第一步是将用户的自然语言请求转换为可执行的查询。这包括两个子步骤:
- 模式理解
TAG分析数据库模式,以确定相关的表和列。
- 语义解析
将用户的请求转换为结构化查询,通常是SQL格式。
例如,对于查询“总结被认为经典的最高票房浪漫电影的评论”,TAG会生成一个SQL查询,从包含电影类型、收入和评论信息的表中选择相关数据。
2、查询执行
一旦查询被合成,它就在数据库引擎上执行。这一步骤有两个关键优势:
- 效率
数据库引擎针对在大型数据集上执行复杂查询进行了优化。
- 灵活性
TAG可以与各种数据库类型一起工作,包括关系型数据库、向量存储和支持基于语言模型的操作符的混合系统。
在上面的例子中,数据库查询引擎检索与浪漫电影对应的行,并按收入对它们进行排名。这一步骤确保了过滤、计数和聚合等计算任务由数据库高效处理。
3、答案生成
最后一步使用语言模型生成自然语言响应。这包括:
- 语义理解
语言模型解释检索到的数据并制定连贯的答案。
- 自然语言生成
模型生成语法正确且上下文适当的响应。
- 迭代推理
TAG可以采用迭代或递归生成模式来处理需要多步推理或聚合的复杂查询。
例如,在检索到关于最高票房浪漫电影的数据后,语言模型生成评论的摘要,为用户提供对用户查询的完整且可理解的答案。
基准测试结果与评估
研究人员对TAG与传统Text2SQL和RAG方法进行了广泛的基准测试。关键发现包括:
- Text2SQL性能
由于仅依赖SQL代码生成而没有单独的答案生成步骤,其准确性不超过20%。
- RAG性能
在所有查询类型中仅正确回答了一个查询,凸显了其在处理涉及推理和计算的复杂查询方面的局限性。
- 手写TAG管道
使用LOTUS运行时实现的手写TAG管道实现了高达65%的准确性,显著优于Text2SQL和RAG基线。
这些评估结果强调了TAG在有效结合语言模型的推理能力和数据库系统的计算能力方面的潜力。通过利用这两个组件,TAG为回答结构化数据上的自然语言查询提供了一个更准确且灵活的解决方案。
三、TAG的未来研究方向
尽管TAG在AI驱动数据库查询领域展现出了巨大潜力,但仍有许多领域值得进一步探索和研究。以下是几个关键的研究方向:
-
先进的查询合成方法:开发更复杂的技术,以将复杂的自然语言查询转换为可执行的数据库查询。这包括增强对自然语言的理解能力,以及提高将自然语言转换为结构化查询的准确性。
-
探索不同的数据库引擎:研究使用不同的数据库执行引擎,包括那些原生支持机器学习操作符的引擎。这有助于评估TAG在不同数据库环境下的性能和适用性,并推动数据库技术的创新。
-
优化的语言模型生成模式:设计针对特定查询类型的生成模式,如迭代总结或递归推理。这可以提高TAG在处理复杂查询时的效率和准确性,并为用户提供更丰富的查询体验。
Table-Augmented Generation(TAG)代表了AI驱动数据库查询领域的一次范式转变。通过统一Text2SQL和RAG(探索 Auto-RAG:提升人工智能知识获取与生成能力的新路径)的优势并解决它们的局限性,TAG为回答复杂的自然语言查询提供了一个通用解决方案。加州大学伯克利分校和斯坦福大学的研究表明,TAG在改变用户与数据交互的方式方面具有巨大潜力,为AI驱动的数据管理开辟了新的研究途径和应用领域。
随着技术的不断进步和应用的不断拓展,TAG有望在更多领域发挥重要作用。例如,在金融领域,TAG可以帮助分析师快速提取和分析大量数据,为决策提供有力支持;在医疗领域,TAG可以辅助医生从海量病历和研究文献中提取关键信息,提高诊断效率和准确性。此外,TAG还可以在教育、科研、电子商务等多个领域发挥重要作用,推动数据驱动的创新和发展。
表增强生成(TAG)作为 AI 驱动数据库查询领域的一次范式转变,成功地整合了 Text2SQL 和 RAG 的优势,并有效克服了它们的局限性。它为解决复杂自然语言查询问题提供了通用且强大的解决方案,为用户与数据的交互方式带来了新的可能性。
相关文章:

Table-Augmented Generation(TAG):Text2SQL与RAG的升级与超越
当下AI与数据库的融合已成为推动数据管理和分析领域发展的重要力量。传统的数据库查询方式,如结构化查询语言(SQL),要求用户具备专业的数据库知识,这无疑限制了非专业人士对数据的访问和利用。为了打破这一壁垒&#x…...
Stable Diffusion本地部署教程(附安装包)
想使用Stable Diffusion需要的环境有哪些呢? python3.10.11(至少也得3.10.6以上):依赖python环境NVIDIA:GPUgit:从github上下载包(可选,由于我已提供安装包,你可以不用git)Stable Diffusion安装包工具包: NVIDIA:https://developer.nvidia.com/cuda-toolkit-archiv…...

【物联网原理与运用】知识点总结(上)
目录 名词解释汇总 第一章 物联网概述 1.1物联网的基本概念及演进 1.2 物联网的内涵 1.3 物联网的特性——泛在性 1.4 物联网的基本特征与属性(五大功能域) 1.5 物联网的体系结构 1.6 物联网的关键技术 1.7 物联网的应用领域 第二章 感知与识别技术 2.1 …...

JuiceFS 2024:开源与商业并进,迈向 AI 原生时代
即将过去的 2024 年,是 JuiceFS 开源版本推出的第 4 年,企业版的第 8 个年头。回顾过去这一年,JuiceFS 社区版依旧保持着快速成长的势头,GitHub 星标突破 11.1K,各项使用指标增长均超过 100%,其中文件系统总…...

C#,动态规划问题中基于单词搜索树(Trie Tree)的单词断句分词( Word Breaker)算法与源代码
1 分词 分词是自然语言处理的基础,分词准确度直接决定了后面的词性标注、句法分析、词向量以及文本分析的质量。英文语句使用空格将单词进行分隔,除了某些特定词,如how many,New York等外,大部分情况下不需要考虑分词…...

计算机网络(六)应用层
6.1、应用层概述 我们在浏览器的地址中输入某个网站的域名后,就可以访问该网站的内容,这个就是万维网WWW应用,其相关的应用层协议为超文本传送协议HTTP 用户在浏览器地址栏中输入的是“见名知意”的域名,而TCP/IP的网际层使用IP地…...

上海亚商投顾:沪指探底回升微涨 机器人概念股午后爆发
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 市场全天探底回升,沪指盘中跌超1.6%,创业板指一度跌逾3%,午后集体拉升翻红…...
conda相关操作
conda 是一个开源的包管理和环境管理工具,主要用于 Python 和数据科学领域。它可以帮助用户安装、更新、删除和管理软件包,同时支持创建和管理虚拟环境。以下是关于 conda 的所有常见操作: 1. 安装 Conda Conda 通常通过安装 Anaconda 或 Mi…...

使用TCP协议实现智能聊天机器人
实验目的与要求 本实验是程序设计类实验,要求使用原始套接字编程,掌握TCP/IP协议与网络编程Sockets通信模型,并根据教师给定的任务要求,使用TCP协议实现智能聊天机器人。 (1)熟悉标准库socket 的用法。 …...
PHP二维数组去除重复值
Date: 2025.01.07 20:45:01 author: lijianzhan PHP二维数组内根据ID或者名称去除重复值 代码示例如下: // 假设 data数组如下 $data [[id > 1, name > Type A],[id > 2, name > Type B],[id > 1, name > Type A] // 重复项 ];// 去重方法 $dat…...

2025年01月11日Github流行趋势
项目名称:xiaozhi-esp32 项目地址url:https://github.com/78/xiaozhi-esp32项目语言:C历史star数:2433今日star数:321项目维护者:78, MakerM0, whble, nooodles2023, Kevincoooool项目简介:构建…...

备战蓝桥杯 队列和queue详解
目录 队列的概念 队列的静态实现 总代码 stl的queue 队列算法题 1.队列模板题 2.机器翻译 3.海港 双端队列 队列的概念 和栈一样,队列也是一种访问受限的线性表,它只能在表头位置删除,在表尾位置插入,队列是先进先出&…...

IT面试求职系列主题-Jenkins
想成功求职,必要的IT技能一样不能少,先说说Jenkins的必会知识吧。 1) 什么是Jenkins Jenkins 是一个用 Java 编写的开源持续集成工具。它跟踪版本控制系统,并在发生更改时启动和监视构建系统。 2)Maven、Ant和Jenkins有什么区别…...

Vue篇-06
1、路由简介 vue-rooter:是vue的一个插件库,专门用来实现SPA应用 1.1、对SPA应用的理解 1、单页 Web 应用(single page web application,SPA)。 2、整个应用只有一个完整的页面 index.html。 3、点击页面中的导航链…...

mysql binlog 日志分析查找
文章目录 前言一、分析 binlog 内容二、编写脚本结果总结 前言 高效快捷分析 mysql binlog 日志文件。 mysql binlog 文件很大 怎么快速通过关键字查找内容 一、分析 binlog 内容 通过 mysqlbinlog 命令可以看到 binlog 解析之后的大概样子 二、编写脚本 编写脚本 search_…...
ubuntu 配置OpenOCD与RT-RT-thread环境的记录
1.git clone git://git.code.sf.net/p/openocd/code openocd 配置gcc编译环境 2. sudo gedit /etc/apt/source.list #cdrom sudo apt-get install git sudo apt-get install libtool-bin sudo apt-get install pkg-config sudo apt-install libusb-1.0-0-dev sudo apt-get…...

双系统解决开机提示security Policy Violation的方法
最近,Windows系统更新后,发现电脑开机无法进入桌面,显示“Verifiying shim SBAT data failed: security Policy Violation; So mething has gone seriously Wrong: SBAT self-check failed: Security Policy Violation”的英文错误信息。为了…...
附加共享数据库( ATTACH DATABASE)的使用场景
附加共享数据库(使用 ATTACH DATABASE)的功能非常实用,通常会在以下几种场景下需要用到: 1. 跨数据库查询和分析 场景: 你的公司有两个独立的数据库: 一个存储了学生信息 (school.db)一个存储了员工信息 …...

matlab的绘图的标题中(title)添加标量以及格式化输出
有时候我们需要在matlab绘制的图像的标题中添加一些变量,这样在修改某些参数后,标题会跟着一块儿变。可以采用如下的方法: x -10:0.1:10; %x轴的范围 mu 0; %均值 sigma 1; %标准差 y normpdf(x,mu,sigma); %使用normpdf函数生成高斯函数…...

2、第一个GO 程序
引言 接下里我们就用Go Land 工具,开发第一个GO程序。大家也可以用其他的开发工具,例如 Vs Code 1、新建项目 第一个是选择你的程序保存位置 (不要有中文)。 第二个是你的Go的编译器的安装地址。 选择完毕后,就点击 …...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...