当前位置: 首页 > news >正文

计算机图形学【绘制立方体和正六边形】

工具介绍

OpenGL:一个跨语言的图形API,用于渲染2D和3D图形。它提供了绘制图形所需的底层功能。

GLUT:OpenGL的一个工具库,简化了窗口创建、输入处理和其他与图形环境相关的任务。

使用的函数

1. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

原理:此函数用于清除当前的颜色缓冲区和深度缓冲区。颜色缓冲区存储着每个像素的颜色信息,而深度缓冲区用于存储每个像素的深度值,以确保在3D场景中正确渲染物体的可见性。每次绘制新帧时,必须清除前一帧的数据,以避免旧内容影响新渲染的图像。清除颜色缓冲区确保背景色是统一的,而清除深度缓冲区允许重新计算物体的深度关系。

2. glLoadIdentity()

原理:此函数重置当前的模型观察矩阵为单位矩阵。模型观察矩阵用于转换物体的位置、旋转和缩放。在设置新的视图或模型转换之前,重置矩阵是必要的,以确保新的变换不会受到之前变换的影响。使用单位矩阵作为基础,可以确保后续的变换(如移动相机)是从一个已知的状态开始的。

3. gluLookAt(2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)

原理:此函数设置相机的位置、观察点和上方向。它通过创建视图矩阵来定义相机的视角。

① eye (相机位置):(2.0, 2.0, 2.0),表示相机位于三维空间中的位置。

② center (观察点):(0.0, 0.0, 0.0),表示相机注视的目标点。

③ up (上方向):(0.0, 0.0, 1.0),定义相机的上方向,通常用来确定视图的“上”方向。

4. glutSwapBuffers()

原理:在双缓冲模式下,glutSwapBuffers 函数用于交换前后缓冲区。前缓冲区显示当前渲染的内容,后缓冲区用于下一帧的绘制。通过交换缓冲区,可以避免画面闪烁和撕裂现象,提供更平滑的视觉效果。这使得用户在屏幕上看到的是完整的一帧,而不是正在绘制的部分。

5. glutMainLoop()

原理:此函数进入GLUT的事件处理循环,持续处理窗口事件和重绘请求。这是程序运行的核心循环,确保应用程序能够响应用户输入、窗口变化等事件。它使得OpenGL程序能够持续运行,并在需要时重绘场景。

实验过程

(0)打开 Visual Studio,在项目栏的 [管理Nuget程序包] 下载安装必要库:

(1)Drawing a Cube

源代码:cube.cpp

#include <GL/glut.h> // 包含OpenGL和GLUT库的头文件// 定义正方体的顶点坐标(边长为0.7)
GLfloat vertices[][3] = {{0.0f, 0.0f, 0.0f}, {0.7f, 0.0f, 0.0f}, {0.7f, 0.7f, 0.0f}, {0.0f, 0.7f, 0.0f},{0.0f, 0.0f, 0.7f}, {0.7f, 0.0f, 0.7f}, {0.7f, 0.7f, 0.7f}, {0.0f, 0.7f, 0.7f}
};// 定义正方体的边,每条边由两个顶点索引定义
int edges[][2] = {{0, 1}, {1, 2}, {2, 3}, {3, 0},{4, 5}, {5, 6}, {6, 7}, {7, 4},{0, 4}, {1, 5}, {2, 6}, {3, 7}
};// 绘制坐标轴
void drawAxes() {glBegin(GL_LINES); // 开始绘制线段// X轴(红色)glColor3f(1.0, 0.0, 0.0); // 设置颜色为红色glVertex3f(0.0, 0.0, 0.0); // X轴起点,坐标为 (-2.0, 0.0, 0.0)glVertex3f(1.5, 0.0, 0.0);  // X轴终点,坐标为 (2.0, 0.0, 0.0)// Y轴(绿色)glColor3f(0.0, 1.0, 0.0); // 设置颜色为绿色glVertex3f(0.0, 0.0, 0.0); // Y轴起点,坐标为 (0.0, -2.0, 0.0)glVertex3f(0.0, 1.5, 0.0);  // Y轴终点,坐标为 (0.0, 2.0, 0.0)// Z轴(蓝色)glColor3f(0.0, 0.0, 1.0); // 设置颜色为蓝色glVertex3f(0.0, 0.0, 0.0); // Z轴起点,坐标为 (0.0, 0.0, -2.0)glVertex3f(0.0, 0.0, 1.5);  // Z轴终点,坐标为 (0.0, 0.0, 2.0)glEnd(); // 结束绘制线段}// 绘制正方体的函数
void drawCube() {glColor3f(0.0, 0.0, 0.0); // 设置颜色为黑色glBegin(GL_LINES); // 开始绘制线段for (int i = 0; i < 12; i++) {int v1 = edges[i][0]; // 边的第一个顶点int v2 = edges[i][1]; // 边的第二个顶点glVertex3fv(vertices[v1]); // 绘制第一个顶点glVertex3fv(vertices[v2]); // 绘制第二个顶点}glEnd(); // 结束绘制线段}// 显示回调函数,用于绘制场景
void display() {glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 清除颜色缓冲区和深度缓冲区glLoadIdentity(); // 重置当前的模型观察矩阵// 设置观察点和方向gluLookAt(2.0, 2.0, 2.0, // 相机位置(eye)0.0, 0.0, 0.0, // 观察点(center)0.0, 0.0, 1.0); // 上方向(up)drawAxes(); // 绘制坐标轴drawCube(); // 调用绘制正方体的函数glutSwapBuffers(); // 交换前后缓冲区
}// 初始化函数,设置清除颜色和启用深度测试
void init() {glClearColor(1.0, 1.0, 1.0, 1.0); // 设置背景颜色为白色glEnable(GL_DEPTH_TEST); // 启用深度测试glMatrixMode(GL_PROJECTION); // 选择投影矩阵glLoadIdentity(); // 重置投影矩阵gluPerspective(45.0, 640.0 / 480.0, 0.1, 100.0); // 设置透视投影glMatrixMode(GL_MODELVIEW); // 切换回模型视图矩阵
}int main(int argc, char** argv) {glutInit(&argc, argv); // 初始化GLUT库glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); // 设置显示模式glutInitWindowSize(640, 480); // 设置窗口大小glutCreateWindow("Cube"); // 创建窗口init(); // 调用初始化函数glutDisplayFunc(display); // 设置显示回调函数glutMainLoop(); // 进入GLUT事件处理循环return 0;
}

①源代码的实验结果:

改变参数,可以得到不同视角的投影:

②替换 drawCube() 函数中的绘制逻辑:

// 绘制正方体的函数
void drawCube() {glBegin(GL_QUADS); // 开始绘制四边形// 正面 (Z=0.0)glColor3f(0.5, 0.5, 0.5); // 设置颜色为灰色glVertex3fv(vertices[0]); // 底左glVertex3fv(vertices[1]); // 底右glVertex3fv(vertices[2]); // 顶右glVertex3fv(vertices[3]); // 顶左// 背面 (Z=0.7)glVertex3fv(vertices[4]); // 底左glVertex3fv(vertices[5]); // 底右glVertex3fv(vertices[6]); // 顶右glVertex3fv(vertices[7]); // 顶左// 左面 (X=0.0)glVertex3fv(vertices[0]); // 前底glVertex3fv(vertices[3]); // 前顶glVertex3fv(vertices[7]); // 后顶glVertex3fv(vertices[4]); // 后底// 右面 (X=0.7)glVertex3fv(vertices[1]); // 前底glVertex3fv(vertices[5]); // 前顶glVertex3fv(vertices[6]); // 后顶glVertex3fv(vertices[2]); // 后底// 上面 (Y=0.7)glVertex3fv(vertices[3]); // 左顶glVertex3fv(vertices[2]); // 右顶glVertex3fv(vertices[6]); // 后顶glVertex3fv(vertices[7]); // 后左顶// 下面 (Y=0.0)glVertex3fv(vertices[0]); // 左底glVertex3fv(vertices[1]); // 右底glVertex3fv(vertices[5]); // 后底glVertex3fv(vertices[4]); // 后左底glEnd(); // 结束绘制四边形
}

运行结果:

(2)Drawing a Hexagon

源代码:hexagon.cpp

#include <GL/glut.h>
#include <math.h>// 窗口大小调整的回调函数
void reshape(int width, int height) {glViewport(0, 0, width, height); // 设置视口glMatrixMode(GL_PROJECTION); // 选择投影矩阵glLoadIdentity(); // 重置投影矩阵// 保持纵横比if (width <= height) {gluOrtho2D(-1.0, 1.0, -1.0 * (GLfloat)height / (GLfloat)width, 1.0 * (GLfloat)height / (GLfloat)width);}else {gluOrtho2D(-1.0 * (GLfloat)width / (GLfloat)height, 1.0 * (GLfloat)width / (GLfloat)height, -1.0, 1.0);}glMatrixMode(GL_MODELVIEW); // 切换回模型视图矩阵
}// 绘制正六边形及其对角线的函数
void drawHexagon() {// 设置六边形的顶点GLfloat vertices[6][2];float sideLength = 0.5f; // 边长设置为0.3double M_PI = 3.14159265358979323846f;for (int i = 0; i < 6; i++) {float angle = 2.0f * M_PI * i / 6 + M_PI / 2; // 顶角在上vertices[i][0] = sideLength * cos(angle); // X坐标vertices[i][1] = sideLength * sin(angle); // Y坐标}// 绘制正六边形glBegin(GL_LINE_LOOP); // 开始绘制六边形的边for (int i = 0; i < 6; i++) {glVertex2fv(vertices[i]); // 添加顶点}glEnd(); // 结束绘制六边形// 绘制六边形的对角线glBegin(GL_LINES); // 开始绘制线段for (int i = 0; i < 6; i++) {for (int j = i + 2; j < 6; j++) { // 只绘制非相邻的顶点之间的线glVertex2fv(vertices[i]); // 第一端点glVertex2fv(vertices[j]); // 第二端点}}glEnd(); // 结束绘制对角线
}// 显示回调函数
void display() {glClear(GL_COLOR_BUFFER_BIT); // 清除颜色缓冲区glLoadIdentity(); // 重置当前的模型观察矩阵drawHexagon(); // 绘制正六边形及其对角线glutSwapBuffers(); // 交换前后缓冲区
}// 初始化函数
void init() {glClearColor(1.0, 1.0, 1.0, 1.0); // 设置背景颜色为白色glColor3f(0.0, 0.0, 0.0); // 设置绘制颜色为黑色glMatrixMode(GL_PROJECTION); // 选择投影矩阵glLoadIdentity(); // 重置投影矩阵gluOrtho2D(-1.0, 1.0, -1.0, 1.0); // 使用正交投影glMatrixMode(GL_MODELVIEW); // 切换回模型视图矩阵
}// 主程序入口
int main(int argc, char** argv) {glutInit(&argc, argv); // 初始化GLUT库glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // 设置显示模式glutInitWindowSize(640, 480); // 设置窗口大小glutCreateWindow("Hexagon"); // 创建窗口init(); // 调用初始化函数glutDisplayFunc(display); // 设置显示回调函数glutReshapeFunc(reshape); // 设置窗口大小调整回调函数glutMainLoop(); // 进入GLUT事件处理循环return 0;
}

注意:正六边形看起来扁平的原因通常与视口的纵横比(宽高比)有关。如果窗口的宽度和高度比例不一致,例如宽度比高度大,那么在正交投影下绘制的形状可能会在视觉上变得扁平。

调整:

a.保持窗口的纵横比:

在窗口调整大小时,保持宽高比一致,确保 OpenGL 的视口与窗口大小相匹配。

b.调整正交投影参数:

根据窗口的宽高比调整 gluOrtho2D 的参数,使得在不同的窗口尺寸下,六边形的显示不受影响。

运行结果:

相关文章:

计算机图形学【绘制立方体和正六边形】

工具介绍 OpenGL&#xff1a;一个跨语言的图形API&#xff0c;用于渲染2D和3D图形。它提供了绘制图形所需的底层功能。 GLUT&#xff1a;OpenGL的一个工具库&#xff0c;简化了窗口创建、输入处理和其他与图形环境相关的任务。 使用的函数 1. glClear(GL_COLOR_BUFFER_BIT |…...

基于django中医药数据可视化平台(源码+lw+部署文档+讲解),源码可白嫖!

摘要 时代在飞速进步&#xff0c;每个行业都在努力发展现在先进技术&#xff0c;通过这些先进的技术来提高自己的水平和优势&#xff0c;中医药管理平台当然不能排除在外。中医药数据可视化平台是在实际应用和软件工程的开发原理之上&#xff0c;运用Python语言、ECharts技术、…...

kafka消费堆积问题探索

背景 我们的商城项目用PHP写的&#xff0c;原本写日志方案用的是PHP的方案&#xff0c;但是&#xff0c;这个方案导致资源消耗一直降不下来&#xff0c;使用了20个CPU。后面考虑使用通过kafka的方案写日志&#xff0c;商城中把产生的日志丢到kafka中&#xff0c;在以go写的项目…...

Vue.js 使用插槽(Slots)优化组件结构

Vue.js 使用插槽&#xff08;Slots&#xff09;优化组件结构 今天我们聊聊 Vue.js 的一个超实用功能——插槽&#xff08;Slots&#xff09;。插槽是 Vue 组件开发中的神器&#xff0c;用好它&#xff0c;你可以让组件变得更灵活、更可复用&#xff0c;还能写出优雅的代码结构…...

Broker如何进行定时心跳发送和故障感知

1.前言 此文章是在儒猿课程中的学习笔记&#xff0c;感兴趣的想看原来的课程可以去咨询儒猿课堂《从0开始带你成为RocketMQ高手》&#xff0c;我本人觉得这个作者还是不错&#xff0c;都是从场景来进行分析&#xff0c;感觉还是挺适合我这种小白的。这块主要都是我自己的学习笔…...

网络安全设备主要有什么

网络安全设备指的肯定是硬件设备了&#xff0c;国内卖安全硬件的没几家&#xff0c;天融信&#xff0c;启明星辰&#xff0c;绿盟&#xff0c;深信服&#xff0c;就这四家卖的比较齐全吧&#xff0c;上它们官网看一下&#xff0c;就知道市面上主要的网络安全设备有哪些了。分类…...

Android Framework WMS全面概述和知识要点

一、概述 定义与作用 在 Android 系统中&#xff0c;WindowManagerService&#xff08;WMS&#xff09;就像是一个大管家&#xff0c;负责管理整个系统的窗口界面。它是 Android Framework 的核心组件之一&#xff0c;处于 system_server 进程内&#xff0c;在 Framework 层占…...

记一次某红蓝演练经历

在某天接到任务&#xff0c;对xxx进行一次红蓝演练&#xff0c;于是把自己渗透过程给记录下来&#xff0c;漏洞关键地方也会打码&#xff0c;希望各位大佬理解&#xff0c;菜鸡一枚&#xff0c;勿喷/(ㄒoㄒ)/~~ 概述 拿到目标域名第一件事就是信息收集&#xff0c;曾经一位大…...

一个运行在浏览器中的开源Web操作系统Puter本地部署与远程访问

文章目录 前言1.关于Puter2.本地部署Puter3.Puter简单使用4. 安装内网穿透5.配置puter公网地址6. 配置固定公网地址 &#x1f4a1; 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。【点击跳转到网站…...

【零基础入门Go语言】struct 和 interface:Go语言是如何实现继承的?

提到面向对象编程中的继承&#xff0c;许多人脑海中可能会浮现出 Java、C 等语言中那一套熟悉的类继承体系。然而&#xff0c;Go 语言作为一门别具一格的编程语言&#xff0c;并没有遵循传统的继承模式。那么&#xff0c;在 Go 语言的世界里&#xff0c;它是怎样实现类似于继承…...

麦田物语学习笔记:实现拖拽物品交换数据和在地图上生成物品

基本流程 1.代码思路 (1)InventoryUI的PlayerSlots与PlayerBag里一一对应,所以想要实现交换数据实际上是,先拿到被拖拽的物体所对的Slot的序号和目标的Slot序号,然后将这两个序号对调一下 (2)物品交换的数据逻辑应该在InventoryManager里去调用,因为InventoryManager里管理了p…...

一些计算机零碎知识随写(25年1月)-1

我原以为世界上有技术的那批人不会那么闲&#xff0c;我错了&#xff0c;被脚本真实了。 今天正隔着画画呢&#xff0c;手机突然弹出几条安全告警通知。 急忙打开服务器&#xff0c;发现问题不简单&#xff0c;直接关服务器重装系统..... 首先&#xff0c;不要认为小网站&…...

Qt学习笔记第81到90讲

第81讲 串口调试助手实现自动发送 为这个名叫“定时发送”的QCheckBox编写槽函数。 想要做出定时发送的效果&#xff0c;必须引入QT框架下的毫秒级定时器QTimer&#xff0c;查阅手册了解详情。 在widget.h内添加新的私有成员变量&#xff1a; QTimer *timer; 在widget类的构造…...

Centos9 + Docker 安装 MySQL8.4.0 + 定时备份数据库到本地

Centos9 Docker 安装 MySQL8.4.0 定时备份数据库到本地 创建目录&#xff0c;创建配置文件启动容器命令定时备份MySQL执行脚本Linux每日定时任务命令文件内参数其他时间参数 AT一次性定时任务 创建目录&#xff0c;创建配置文件 $ mkdir -p /opt/mysql/conf$ vim /opt/mysql/…...

网络原理一>UDP协议详解

UDP和TCP都是应用层中的重要协议&#xff0c;如果做基础架构开发&#xff0c;会用得多一些。 这一篇我们先简单聊一下的UDP TCP格式呈现&#xff1a; 我们知道UDP是一种无连接&#xff0c;面向数据报&#xff0c;全双工&#xff0c;不可靠传输特性的网络协议。 基本格式如图…...

MySQL的小问题

编码问题 不管官方使用什么编码&#xff1a;latin1、gbk、utf8、utfmb4。统一使用utfmb4 MySQL中的utf8并不是utf-8&#xff0c;它省略了一个字节&#xff0c;只是用三个字节存储所有的符号&#xff0c;utfmb4才是utf-8 远程登录问题&#xff1a; MySQL官方默认没有启动远程…...

Mac——Docker desktop安装与使用教程

摘要 本文是一篇关于Mac系统下Docker Desktop安装与使用教程的博文。首先介绍连接WiFi网络&#xff0c;然后详细阐述了如何在Mac上安装Docker&#xff0c;包括下载地址以及不同芯片版本的选择。接着讲解了如何下载基础镜像和指定版本镜像&#xff0c;旨在帮助用户在Mac上高效使…...

FastApi Swagger 序列化问题

问题 错误现象&#xff1a; fastapi的 swagger 界面无法正常打开控制台报错&#xff1a;raise PydanticInvalidForJsonSchema(fCannot generate a JsonSchema for {error_info}) 详细报错&#xff1a; File "d:\Envs\miniconda3\envs\xdagent\lib\site-packages\pydan…...

《机器学习》——sklearn库中CountVectorizer方法(词频矩阵)

CountVectorizer方法介绍 CountVectorizer 是 scikit-learn 库中的一个工具&#xff0c;它主要用于将文本数据转换为词频矩阵&#xff0c;而不是传统意义上的词向量转换&#xff0c;但可以作为词向量转换的一种基础形式。用于将文本数据转换为词频矩阵&#xff0c;它是文本特征…...

UML系列之Rational Rose笔记三:活动图(泳道图)

一、新建活动图&#xff08;泳道图&#xff09; 依旧在用例视图里面&#xff0c;新建一个activity diagram&#xff1b;新建好之后&#xff0c;就可以绘制活动图了&#xff1a; 正常每个活动需要一个开始&#xff0c;点击黑点&#xff0c;然后在图中某个位置安放&#xff0c;接…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...