当前位置: 首页 > news >正文

WPF控件Grid的布局和C1FlexGrid的多选应用

使用 Grid.Column和Grid.Row布局,将多个C1FlexGrid布局其中,使用各种事件来达到所需效果,点击复选框可以加载数据到列表,移除列表的数据,自动取消复选框等

移除复选框的要注意!!!,设置值就会自动取消,触发你的选择和不选中事件,这里会造成删除多次,这时候如果已经设置为0,其实已经触发不选中事件,就是删除事件了,如果还执行集合的

ProcedureScrapGroupList.Remove(CheckProcedureScrapGroupModel);

就会造成多删除一条数据,CheckProcedureScrapGroupModel是当前列表的选项数据,这个数据已经被不选中事件删除后,就会自动获取下一各对象进行删除

相关文章:

WPF控件Grid的布局和C1FlexGrid的多选应用

使用 Grid.Column和Grid.Row布局,将多个C1FlexGrid布局其中,使用各种事件来达到所需效果,点击复选框可以加载数据到列表,移除列表的数据,自动取消复选框等 移除复选框的要注意!!!&am…...

Jenkins-持续集成、交付、构建、部署、测试

Jenkins-持续集成、交付、构建、部署、测试 一: Jenkins 介绍1> Jenkins 概念2> Jenkins 目的3> Jenkins 特性4> Jenkins 作用 二:Jenkins 版本三:DevOps流程简述1> 持续集成(Continuous Integration,CI&#xff0…...

高级第一次作业

1、shell 脚本写出检测 /tmp/size.log 文件如果存在显示它的内容,不存在则创建一个文件将创建时间写入。 2、写一个 shel1 脚本,实现批量添加 20个用户,用户名为user01-20,密码为user 后面跟5个随机字符。 3、编写个shel 脚本将/usr/local 日录下大于10M的文件转移到…...

Copula算法原理和R语言股市收益率相依性可视化分析

阅读全文:http://tecdat.cn/?p6193 copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。在本视频中,我们通过可视化的方式直观地介绍了Copula函数,并通过R软件应用于金融时间序列数据来理解它(点击文…...

反弹SHELL不回显带外正反向连接防火墙出入站文件下载

什么是反弹shell 正向连接正向连接(Forward Connection):正向连接是一种常见的网络通信模式,其中客户端主动发起连接到服务器或目标系统。正向连接通常用于客户端-服务器通信,客户端主动请求服务或资源,例如…...

后盾人JS--JS值类型使用

章节介绍与类型判断 看看构造函数 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</t…...

1月11日

[WUSTCTF2020]CV Maker 可以看到有个注册页面&#xff0c;尝试注册一个用户登进去看看 进来后第一眼就看到文件上传&#xff0c;尝试上传&#xff0c;上传php后返回了 文件上传后端检测exif_imagetype()函数 他提示不是image&#xff0c;也就是需要我们构造一个文件头为图像类…...

【深度学习】Pytorch:加载自定义数据集

本教程将使用 flower_photos 数据集演示如何在 PyTorch 中加载和导入自定义数据集。该数据集包含不同花种的图像&#xff0c;每种花的图像存储在以花名命名的子文件夹中。我们将深入讲解每个函数和对象的使用方法&#xff0c;使读者能够推广应用到其他数据集任务中。 flower_ph…...

最近在盘gitlab.0.先review了一下docker

# 正文 本猿所在产品的代码是保存到了一个本地gitlab实例上&#xff0c;实例是别的同事搭建的。最近又又又想了解一下&#xff0c;而且已经盘了一些了&#xff0c;所以写写记录一下。因为这个事儿没太多的进度压力&#xff0c;索性写到哪儿算哪儿&#xff0c;只要是新了解到的…...

OA项目登录

导入依赖,下面的依赖是在这次OA登录中用到的 <!--web依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.sprin…...

verilogHDL仿真详解

前言 Verilog HDL中提供了丰富的系统任务和系统函数&#xff0c;用于对仿真环境、文件操作、时间控制等进行操作。&#xff08;后续会进行补充&#xff09; 正文 一、verilogHDL仿真详解 timescale 1ns/1ps //时间单位为1ns&#xff0c;精度为1ps&#xff0c; //编译…...

基于http协议的天气爬虫

该系统将基于目前比较流行的网络爬虫技术&#xff0c; 对网站上的天气数据进行查询分析&#xff0c; 最终使客户能够通过简单的操作&#xff0c; 快速&#xff0c; 准确的获取目标天气数据。主要包括两部分的功能&#xff0c; 第一部分是天气数据查询&#xff0c; 包括时间段数…...

_STM32关于CPU超频的参考_HAL

MCU: STM32F407VET6 官方最高稳定频率&#xff1a;168MHz 工具&#xff1a;STM32CubeMX 本篇仅仅只是提供超频&#xff08;默认指的是主频&#xff09;的简单方法&#xff0c;并未涉及STM32超频极限等问题。原理很简单&#xff0c;通过设置锁相环的倍频系数达到不同的频率&am…...

C#,图论与图算法,任意一对节点之间最短距离的弗洛伊德·沃肖尔(Floyd Warshall)算法与源程序

一、弗洛伊德沃肖尔算法 Floyd-Warshall算法是图的最短路径算法。与Bellman-Ford算法或Dijkstra算法一样&#xff0c;它计算图中的最短路径。然而&#xff0c;Bellman Ford和Dijkstra都是单源最短路径算法。这意味着他们只计算来自单个源的最短路径。另一方面&#xff0c;Floy…...

AWS云计算概览(自用留存,整理中)

目录 一、云概念概览 &#xff08;1&#xff09;云计算简介 &#xff08;2&#xff09;云计算6大优势 &#xff08;3&#xff09;web服务 &#xff08;4&#xff09;AWS云采用框架&#xff08;AWS CAF&#xff09; 二、云经济学 & 账单 &#xff08;1&#xff09;定…...

1. npm 常用命令详解

npm 常用命令详解 npm&#xff08;Node Package Manager&#xff09;是 Node.js 的包管理工具&#xff0c;用于安装和管理 Node.js 应用中的依赖库。下面是 npm 的一些常用命令及其详细解释和示例代码。 镜像源 # 查询当前使用的镜像源 npm get registry# 设置为淘宝镜像源 …...

js:根据后端返回数据的最大值进行计算然后设置这个最大值为百分之百,其他的值除这个最大值

问&#xff1a; 现在tabData.value 接收到了后端返回的数据&#xff0c; [{text:人力,percentage&#xff1a;‘90’}&#xff0c;{text:物品,percentage&#xff1a;‘20’}&#xff0c;{text:物理,percentage&#xff1a;‘50’}&#xff0c;{text:服务,percentage&#xff…...

【Spring】@Size 无法拦截null的原因

问题复现 在构建 Web 服务时&#xff0c;我们一般都会对一个 HTTP 请求的 Body 内容进行校验&#xff0c;例如我们来看这样一个案例及对应代码。当开发一个学籍管理系统时&#xff0c;我们会提供了一个 API 接口去添加学生的相关信息&#xff0c;其对象定义参考下面的代码&…...

【Block总结】掩码窗口自注意力 (M-WSA)

摘要 论文链接&#xff1a;https://arxiv.org/pdf/2404.07846 论文标题&#xff1a;Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising Masked Window-Based Self-Attention (M-WSA) 是一种新颖的自注意力机制&#xff0c;旨在解决传统自注意力方法在…...

用 HTML5 Canvas 和 JavaScript 实现雪花飘落特效

这篇文章将带您深入解析使用 HTML5 Canvas 和 JavaScript 实现动态雪花特效的代码原理。 1,效果展示 该效果模拟了雪花从天而降的动态场景,具有以下特点: 雪花数量、大小、透明度和下落速度随机。雪花会在屏幕底部重置到顶部,形成循环效果。随窗口大小动态调整,始终覆盖…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...