当前位置: 首页 > news >正文

CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型

CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型

目录

    • CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现贝叶斯优化CNN-GRU融合多头注意力机制多变量回归预测,BO-CNN-GRU-Multihead-Attention;

MATLAB实现BO-CNN-GRU-Multihead-Attention贝叶斯优化卷积神经网络-门控循环单元融合多头注意力机制多变量回归预测。多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。
2.data为数据集,格式为excel,7个输入特征,1个输出特征,多输入单输出回归预测,main.m是主程序,其余为函数文件,无需运行;

3.贝叶斯优化参数为:学习率,隐含层节点,正则化参数;

4.评价指标包括:R2、MAE、MSE、RMSE和MAPE等;

5.运行环境matlab2023b及以上。

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。
在这里插入图片描述
参考模型结构(LSTM改成GRU即可)
在这里插入图片描述

程序设计

  • 完整代码私信回复CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%% 导入数据
res=xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
fitness = @fical;%%  贝叶斯优化参数范围

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

相关文章:

CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型

CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型 目录 CNN-GRU-MATT加入贝叶斯超参数优化,多输入单输出回归模型预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现贝叶斯优化CNN-GRU融合多头注意力机制多变量回归预测&#xff…...

Java 如何传参xml调用接口获取数据

传参和返参的效果图如下: 传参: 返参: 代码实现: 1、最外层类 /*** 外层DATA类*/ XmlRootElement(name "DATA") public class PointsXmlData {private int rltFlag;private int failType;private String failMemo;p…...

uniapp 之 uni-forms校验提示【提交的字段[‘xxx‘]在数据库中并不存在】解决方案

目录 场景问题代码结果问题剖析解决方案 场景 uni-forms官方组件地址 使用uniapp官方提供的组件,某个表单需求,单位性质字段如果是高校,那么工作单位则是高校的下拉选择格式,单位性质如果是其他的类型,工作单位则是手动…...

excel VBA 基础教程

这里写目录标题 快捷键选择所有有内容的地方 调试VBA录制宏,打开VBA开发工具录制宏,相当于excel自动写代码(两个表格内容完全一致才可以) 查看宏代码保持含有宏程序的文件xlsm后缀(注意很容易有病毒)宏文件安全设置 使…...

基于异步IO的io_uring

基于异步IO的io_uring 1. io_uring的实现原理 io_uring使用了一种异步IO机制,它通过一对环形缓冲区(ring buffer)实现用户态于内核态之间的高效通信,用户只需将IO请求放入提交队列,当内核完成IO请求时,会将结果放入完成队列&…...

【江协STM32】10-2/3 MPU6050简介、软件I2C读写MPU6050

1. MPU6050简介 MPU6050是一个6轴姿态传感器,可以测量芯片自身X、Y、Z轴的加速度、角速度参数,通过数据融合,可进一步得到姿态角,常应用于平衡车、飞行器等需要检测自身姿态的场景3轴加速度计(Accelerometer&#xff…...

仓颉笔记——写一个简易的web服务并用浏览器打开

创建一个web服务端,同时创建一个客户端去读取这个服务端。 也满足浏览器打开web的需求。 直接上代码。 import net.http.* import std.time.* import std.sync.* import std.log.LogLevel// 1. 构建 Server 实例 let server ServerBuilder().addr("127.0.0.1&…...

DolphinScheduler自身容错导致的服务器持续崩溃重大问题的排查与解决

01 问题复现 在DolphinScheduler中有如下一个Shell任务: current_timestamp() { date "%Y-%m-%d %H:%M:%S" }TIMESTAMP$(current_timestamp) echo $TIMESTAMP sleep 60 在DolphinScheduler将工作流执行策略设置为并行: 定时周期调度设置…...

ecmascript 标准+ 严格模式与常规模式 + flat-flatMap 应用

文章目录 ecmascript 历程严格模式与常规模式下的区别及注意事项严格模式下的属性删除Array.prototype.flat()和Array.prototype.flatMap() 实例应用 ecmascript 历程 变量声明要求 常规模式: 在常规模式下,使用var关键字声明变量时会出现变量提升现象。…...

基于ILI9341液晶屏+STM32U5单片的显示试验

试验要求: 1、通过串口,下发两个命令 STR和PIC; 2、STR模式: (1)串口输入什么,屏幕上显示什么 (2)如果屏幕满,自动下滚 (3)输入回车&a…...

最短路径算法

关注&#xff1a;算法思路&#xff0c;时间复杂度&#xff0c;适用情况&#xff08;单源/多源&#xff0c;负边权/负边权回路&#xff09; 复习弗雷德算法--基于动态规划--多源--负边权--时间复杂度O(v^3) int的最大值是0x7fffffff #include <iostream> using namesp…...

如何用 ESP32-CAM 做一个实时视频流服务器

文章目录 ESP32-CAM 概述ESP32-S 处理器内存Camera 模块MicroSD 卡槽天线板载 LED 和闪光灯其他数据手册和原理图ESP32-CAM 功耗 ESP32-CAM 引脚参考引脚排列GPIO 引脚哪些 GPIO 可以安全使用&#xff1f;GPIO 0 引脚MicroSD 卡引脚 ESP32-CAM 的烧录方式使用 ESP32-CAM-MB 编程…...

Centos7 解决Maven scope=system依赖jar包没有打包到启动jar包中的问题(OpenCV-4.10)

最近项目中遇到问题,OpenCV的Jar包在程序打包后,找不到相关的类,比如MAT,这个时候怀疑OpenCV_4.10的Jar没有和应用程序一起打包,后面排查到确实是没有打包进去,特此记录,便于日后查阅。 <!-- 加载lib目录下的opencv包 --> <dependency><groupId>org…...

iOS实际开发中使用Alamofire实现多文件上传(以个人相册为例)

引言 在移动应用中&#xff0c;图片上传是一个常见的功能&#xff0c;尤其是在个人中心或社交平台场景中&#xff0c;用户经常需要上传图片到服务器&#xff0c;用以展示个人风采或记录美好瞬间。然而&#xff0c;实现多图片上传的过程中&#xff0c;如何设计高效的上传逻辑并…...

如何将分割的mask转为为分割标签

将分割的mask转换为分割标签通常涉及将每个像素的类别标识&#xff08;在mask中以不同的灰度值或颜色表示&#xff09;转换为整数标签。这些标签通常用于机器学习或深度学习模型的训练、验证和测试阶段。 使用方式&#xff0c;控制台或者命令行使用以下命令&#xff1a; pyth…...

【动手学电机驱动】STM32-MBD(5)Simulink 模型开发之 PWM 输出

STM32-MBD&#xff08;1&#xff09;安装 Simulink STM32 硬件支持包 STM32-MBD&#xff08;2&#xff09;Simulink 模型部署入门 STM32-MBD&#xff08;3&#xff09;Simulink 状态机模型的部署 STM32-MBD&#xff08;4&#xff09;Simulink 状态机实现按键控制 STM32-MBD&…...

MySQL进阶突击系列(05)突击MVCC核心原理 | 左右护法ReadView视图和undoLog版本链强强联合

2024小结&#xff1a;在写作分享上&#xff0c;这里特别感谢CSDN社区提供平台&#xff0c;支持大家持续学习分享交流&#xff0c;共同进步。社区诚意满满的干货&#xff0c;让大家收获满满。 对我而言&#xff0c;珍惜每一篇投稿分享&#xff0c;每一篇内容字数大概6000字左右&…...

vue2日历组件

这个代码可以直接运行&#xff0c;未防止有组件库没安装&#xff0c;将组件库的代码&#xff0c;转成文字了 vue页面 <template><div class"about"><div style"height: 450px; width: 400px"><div style"height: 100%; overflo…...

【PyQt】多行纯文本框

[toc]qt多行纯文本框 QPlainTextEdit QPlainTextEdit 是可以多行的纯文本编辑框 文本浏览框 内置了一个** QTextDocument **类型的对象 &#xff0c;存放文档。 1.信号&#xff1a;文本被修改 当文本框中的内容被键盘编辑&#xff0c;被点击就会发出 textChanged 信号&…...

workerman5.0篇〡异步非阻塞协程HTTP客户端

概述 workerman/http-client 是一个异步http客户端组件。所有请求响应异步非阻塞&#xff0c;内置连接池&#xff0c;消息请求和响应符合PSR7规范。 Workerman 5.0 版本中的异步HTTP协程客户端组件是一个基于PHP协程的高性能HTTP客户端&#xff0c;它能够充分利用PHP的异步特…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学&#xff08;silicon photonics&#xff09;的光波导&#xff08;optical waveguide&#xff09;芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中&#xff0c;光既是波又是粒子。光子本…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...

高防服务器价格高原因分析

高防服务器的价格较高&#xff0c;主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因&#xff1a; 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器&#xff0c;因此…...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...