当前位置: 首页 > news >正文

Attention计算中的各个矩阵的维度都是如何一步步变化的?

在Transformer模型中,各个矩阵的维度变化是一个关键的过程,涉及到输入、编码器、解码器和输出等多个阶段。以下是详细的维度变化过程:

输入阶段

  • 输入序列:假设输入序列的长度为seq_len,每个单词或标记通过词嵌入(word embedding)转换为一个固定维度的向量,维度为d_model。因此,输入矩阵的维度为(seq_len, d_model)
  • 位置编码:位置编码(Positional Encoding)通常与词嵌入向量相加,以提供序列中每个单词的位置信息。位置编码的维度与词嵌入相同,即(seq_len, d_model)

编码器(Encoder)阶段

  • 多头注意力机制(Multi-Head Attention)

    • 查询(Q)、键(K)、值(V)矩阵:输入矩阵与权重矩阵相乘得到Q、K、V矩阵。假设每个头的维度为d_k(通常d_k = d_model / num_heads),则Q、K、V的维度为(seq_len, d_k)
    • 注意力计算:Q与K的转置相乘,得到一个注意力得分矩阵,维度为(seq_len, seq_len)。经过softmax处理后,再与V相乘,得到输出矩阵,维度为(seq_len, d_k)
    • 多头拼接:将所有头的输出拼接或平均,得到最终的输出矩阵,维度为(seq_len, d_model)
  • 前馈神经网络(Feed-Forward Network)

    • 输入矩阵经过两个线性变换和非线性激活函数,最终输出的维度保持为(seq_len, d_model)

解码器(Decoder)阶段

  • 掩码多头注意力机制(Masked Multi-Head Attention)

    • 类似于编码器中的多头注意力机制,但使用了掩码来防止解码器在生成时“偷看”未来的信息。输出矩阵的维度为(seq_len, d_model)
  • 编码器-解码器注意力机制

    • 解码器的查询(Q)与编码器的键(K)和值(V)进行注意力计算,输出矩阵的维度为(seq_len, d_model)

输出阶段

  • 线性层和Softmax
    • 解码器的输出经过一个线性层,将维度从(seq_len, d_model)转换为(seq_len, vocab_size),其中vocab_size是词汇表的大小。
    • 最后通过Softmax层,得到每个单词的概率分布,用于预测下一个单词。

这些维度变化确保了Transformer模型能够有效地处理序列数据,并在各个层之间传递和转换信息。

相关文章:

Attention计算中的各个矩阵的维度都是如何一步步变化的?

在Transformer模型中,各个矩阵的维度变化是一个关键的过程,涉及到输入、编码器、解码器和输出等多个阶段。以下是详细的维度变化过程: 输入阶段 输入序列:假设输入序列的长度为seq_len,每个单词或标记通过词嵌入&…...

【数模学习笔记】插值算法和拟合算法

声明:以下笔记中的图片以及内容 均整理自“数学建模学习交流”清风老师的课程资料,仅用作学习交流使用 文章目录 插值算法定义三个类型插值举例插值多项式分段插值三角插值 一般插值多项式原理拉格朗日插值法龙格现象分段线性插值 牛顿插值法 Hermite埃尔…...

探索 C++ 与 LibUSB:开启 USB 设备交互的奇幻之旅

一、引言 在当今数字化时代,USB(通用串行总线)设备无处不在,从常见的 U 盘、鼠标、键盘,到复杂的工业数据采集设备、医疗监测仪器等,它们以方便快捷的插拔式连接,为人们的生活和工作带来了极大…...

二、模型训练与优化(4):模型优化-实操

下面我将以 MNIST 手写数字识别模型为例,从 剪枝 (Pruning) 和 量化 (Quantization) 两个常用方法出发,提供一套可实际动手操作的模型优化流程。此示例基于 TensorFlow/Keras 环境,示范如何先训练一个基础模型,然后对其进行剪枝和…...

3D可视化产品定制,应用于哪些行业领域?

3D可视化定制服务已广泛渗透至众多行业领域,包括汽车、家居、时尚鞋服、珠宝配饰以及数码电器等: 汽车行业: 借助Web全景技术与3D模型,我们高保真地再现了汽车外观,为用户带来沉浸式的车型浏览体验。用户可在展示界面自…...

Avalonia 入门笔记(零):概述

Avalonia 是一个基于 .NET 和 Skia 的开源、跨平台 UI 框架,支持 Windows、Linux、macOS、iOS、Android 和 WebAssembly。Skia 是一个基于 C 的开源 2D 渲染引擎,Avalonia 通过 Skia 自绘 UI 控件,保证在全平台具有一致的观感 基于 .NET 的跨…...

Unity TextMesh Pro入门

概述 TextMesh Pro是Unity提供的一组工具,用于创建2D和3D文本。与Unity的UI文本和Text Mesh系统相比,TextMesh Pro提供了更好的文本格式控制和布局管理功能。 本文介绍了TMP_Text组件和Tmp字体资产(如何创建字体资产和如何解决缺字问题),还有一些高级功…...

[论文阅读] (35)TIFS24 MEGR-APT:基于攻击表示学习的高效内存APT猎杀系统

《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正,非常欢迎大家给我留言评论,学术路上期…...

12 USART串口通讯

1 串口物理层 两个设备的“DB9接口”之间通过串口信号建立连接,串口信号线中使用“RS232标准”传输数据信号。由于RS232电平标准的信号不能直接被控制器直接识别,所以这些信号会经过“电平转换芯片”转换成控制器能识别的“TTL校准”的电平信号&#xff…...

CF 368A.Sereja and Coat Rack(Java实现)

问题分析 简而言之,小明要邀请m个绅士到家,家里有n个挂衣钩,一个挂衣钩要支付i元,如果挂衣钩不够了就要给每个绅士赔d元 思路分析 所以思路就很清楚了,获取n,d,m的值,并用数组存放每…...

清华大学、字节跳动等单位联合发布最新视觉语言动作模型RoboVLMs

近年来,视觉语言基础模型(Vision Language Models, VLMs)大放异彩,在多模态理解和推理上展现出了超强能力。现在,更加酷炫的视觉语言动作模型(Vision-Language-Action Models, VLAs)来了&#x…...

网络安全、Web安全、渗透测试之笔经面经总结

本篇文章涉及的知识点有如下几方面: 1.什么是WebShell? 2.什么是网络钓鱼? 3.你获取网络安全知识途径有哪些? 4.什么是CC攻击? 5.Web服务器被入侵后,怎样进行排查? 6.dll文件是什么意思,有什么…...

.NET Core NPOI 导出图片到Excel指定单元格并自适应宽度

NPOI:支持xlsx,.xls,版本>2.5.3 XLS:HSSFWorkbook,主要前缀HSS, XLSX:XSSFWorkbook,主要前缀XSS,using NPOI.XSSF.UserModel; 1、导出Excel添加图片效果&#xff0…...

python bs4 selenium 查找a href=javascript:();的实际点击事件和url

在使用 BeautifulSoup 和 Selenium 时,处理 href"javascript:;" 的链接需要一些额外的步骤,因为这些链接不直接指向一个 URL,而是通过 JavaScript 代码来执行某些操作。这可能包括导航到另一个页面、触发模态窗口、显示/隐藏内容等…...

三 BH1750 光感驱动调试1

一 扫描设备 查看手册 BH1750 光感模块 寄存器地址为 0x23 官方手册 : http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sensor/light/bh1750fvi-e.pdf su 然后用 i2cdetect 扫描设备: 拨,插 对比, 探测设备挂载在 /dev/i2c-5 上, 从设备地址为 0x23 二 …...

UE材质节点Fresnel

Fresnel节点 ExponentIn 控制边缘透明度 BaseReflectFractionIn 控制中心透明度...

linux的大内核锁与顺序锁

大内核锁 Linux大内核锁(Big Kernel Lock,BKL)是Linux内核中的一种锁机制,用于保护内核资源,以下是关于它的详细介绍: 概念与作用 大内核锁是一种全局的互斥锁,在同一时刻只允许一个进程访问…...

用户注册模块用户校验(头条项目-05)

1 用户注册后端逻辑 1.1 接收参数 username request.POST.get(username) password request.POST.get(password) phone request.POST.get(phone) 1.2 校验参数 前端校验过的后端也要校验,后端的校验和前端的校验是⼀致的 # 判断参数是否⻬全 # 判断⽤户名是否…...

面向对象的基本概念

本篇,来介绍面向对象的基本概念。 1 面向过程与面向对象 面向过程与面向对象,是两种不同的编程思想。 1.1 面向过程 面向过程的思路,是按照问题的解决步骤,将程序分解为一个个具体的函数或过程,然后依次调用这些函数来实现程序的功能。 面向对象的程序设计,程序的执行…...

深度学习每周学习总结R4(LSTM-实现糖尿病探索与预测)

🍨 本文为🔗365天深度学习训练营 中的学习记录博客R6中的内容,为了便于自己整理总结起名为R4🍖 原作者:K同学啊 | 接辅导、项目定制 目录 0. 总结1. LSTM介绍LSTM的基本组成部分如何理解与应用LSTM 2. 数据预处理3. 数…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...