当前位置: 首页 > news >正文

Debye-Einstein-模型拟合比热容Python脚本

固体比热模型中的德拜模型和爱因斯坦模型是固体物理学中用于估算固体热容的两种重要原子振动模型。

爱因斯坦模型基于三种假设:1.晶格中的每一个原子都是三维量子谐振子;2.原子不互相作用;3.所有的原子都以相同的频率振动(与德拜模型不同)。

在高温下,爱因斯坦模型与实验结果一致,特别是与杜隆-珀替定律相符‌。

图片

德拜模型将晶体中的原子振动视为连续弹性介质中传播的弹性波。固体的热容主要由低频的声学支声子贡献,存在截止频率,并未考虑光学支声子的贡献。在低温区与实验结果高度一致。

图片

基本设置

import numpy as npimport osimport matplotlib.pyplot as pltfrom scipy.optimize import curve_fitimport scipy.integrate as integrate
from scipy.integrate import quad
R = 8.3144  # unit: J/ (mol·K)N = 10   #number of atomsn = 0.5 #Debye/(Debye+Einstein)names = ["data.dat"]colors = 'rgbmpyckrgbmpyc'

数据读入

def readata(name):    try:        data = np.loadtxt(name)          T = data[:, 0]        T = np.flipud(T)        HC = data[:, 1]  # HC        HC = np.flipud(HC)        #print(f"Data read from {name}:")        #print("T:", T)        #print("HC:", HC)        return T, HC    except ValueError:        print('empty value encountered in', name)        return None, None

德拜模型

    def intdebye(x):        return x**4 * np.exp(x) / (np.exp(x) - 1)**2       HC_calc_debye = []        for Ti in T:        A1 = quad(intdebye, 0, ThetaD / Ti)[0]          debye_value = 9 * R * N * (Ti / ThetaD)**3 * A1        HC_calc_debye.append(debye_value)    HC_calc_debye = np.array(HC_calc_debye)

爱因斯坦模型

    HC_calc_Einstein = []       for Ti in T:        einstein_value = 3 * R * N * (ThetaE / Ti)**2 * np.exp(ThetaE / Ti) / (np.exp(ThetaE / Ti) - 1)**2        HC_calc_Einstein.append(einstein_value)    HC_calc_Einstein = np.array(HC_calc_Einstein)

HC模型混合(将D和E模型填入)

def HC_lattice(T, ThetaD, ThetaE):    HC_lattice = n * HC_calc_debye + (1 - n) * HC_calc_Einstein        return HC_lattice    

磁熵或相变熵值计算和统计

def S_CT(T, C_mag):    CoT = C_mag / T    S = np.cumsum(CoT)    #print("S:", S)    return S    S_integral = integrate_S(T, S, 0, 50)    #print(f'n={n:.1f}, S_integral from 0 to 50: {S_integral:.3f}')    print("S:", S_integral)    return S_integral

拟合区间函数设定

def FitRange(lower, upper, numbers):    ii = np.argmin(np.abs(numbers - lower))    jj = np.argmin(np.abs(numbers - upper))    return min(ii, jj), max(ii, jj)    #lower, upper = FitRange(25, 200, T)  # claim the lower and upper range of fitting    #popt, pcov = curve_fit(HC_lattice, T[lower:upper], HC[lower:upper])   

读入数据拟合和绘图

for i, name in enumerate(names):    print(name)    T, HC = readata(name)        if T is not None and HC is not None:        if 'data' in name:            color = colors[i]            plt.subplot(2,2,1)            plt.plot(T, HC, color + 'o', label=name)            plt.xlabel('T(K)')            plt.ylabel('HC(J/K/mol)')            plt.legend()                        lower, upper = FitRange(25, 200, T)  # claim the lower and upper range of fitting            popt, pcov = curve_fit(HC_lattice, T[lower:upper], HC[lower:upper])                        ThetaD,ThetaE=popt            print('fit:  ThetaD=%5.3f, ThetaE=%5.3f' % (ThetaD,ThetaE))            plt.subplot(2,2,2)            plt.plot(T, HC_lattice(T, *popt), 'k-', label="HC_lattice")            plt.plot(T, HC, color + '*', label="HC_exp")            plt.xlabel('T(K)')            plt.ylabel(r'$HC(J/K/mol)$')            plt.legend()                        C_mag = HC - HC_lattice(T, *popt)            plt.subplot(2,2,3)            plt.plot(T, C_mag, 'k*', label="C_mag")            plt.plot(T, HC, color + '*')            plt.xlabel('T(K)')            plt.ylabel(r'$HC_mag(J/K/mol)$')            plt.legend()                                                plt.subplot(2,2,4)                        S_mag = S_CT(T[1:], C_mag[1:])            plt.plot(T[1:], S_mag, 'k-', label="S_mag")            plt.plot([0, 300], [R * np.log(2 * 5 / 2 + 1), R * np.log(2 * 5 / 2 + 1)], 'r-', label="S=5/2")            plt.plot([0, 300], [R * np.log(2 * 4 / 2 + 1), R * np.log(2 * 4 / 2 + 1)], 'b-', label="S=2")            plt.plot([0, 300], [R * np.log(2 * 4 / 4 + 1), R * np.log(2 * 4 / 4 + 1)], 'm-', label="S=1")            plt.legend()
plt.show()#plt.savefig("1.png")

相关文章:

Debye-Einstein-模型拟合比热容Python脚本

固体比热模型中的德拜模型和爱因斯坦模型是固体物理学中用于估算固体热容的两种重要原子振动模型。 爱因斯坦模型基于三种假设:1.晶格中的每一个原子都是三维量子谐振子;2.原子不互相作用;3.所有的原子都以相同的频率振动(与德拜…...

OpenCV的图像分割

1、基本概念 图像分割是计算机视觉和图像处理中的一个关键步骤,它指的是将图像划分为多个区域或对象的过程。这些区域或对象在某种特性(如颜色、形状、纹理或亮度等)上是一致的或相似的,而在不同区域之间则存在明显的差异。图像分…...

【源码+文档+调试讲解】农产品研究报告管理系统

摘 要 农产品研究报告管理系统是一个旨在收集、整理、存储和分析农产品相关研究数据的综合性平台。农产品研究报告管理系统通常包含一个强大的数据库,它能够处理大量的研究数据,并对这些数据进行有效的管理和备份。农产品研究报告管理系统是现代农业科学…...

【STM32-学习笔记-7-】USART串口通信

文章目录 USART串口通信Ⅰ、硬件电路Ⅱ、常见的电平标准Ⅲ、串口参数及时序Ⅳ、STM32的USART简介数据帧起始位侦测数据采样波特率发生器 Ⅴ、USART函数介绍Ⅵ、USART_InitTypeDef结构体参数1、USART_BaudRate2、USART_WordLength3、USART_StopBits4、USART_Parity5、USART_Mode…...

高可用虚拟IP-keepalived

个人觉得华为云这个文档十分详细:使用虚拟IP和Keepalived搭建高可用Web集群_弹性云服务器 ECS_华为云 应用场景:虚拟IP技术。虚拟IP,就是一个未分配给真实主机的IP,也就是说对外提供数据库服务器的主机除了有一个真实IP外还有一个…...

AI多模态技术介绍:视觉语言模型(VLMs)指南

本文作者:AIGCmagic社区 刘一手 AI多模态全栈学习路线 在本文中,我们将探讨用于开发视觉语言模型(Vision Language Models,以下简称VLMs)的架构、评估策略和主流数据集,以及该领域的关键挑战和未来趋势。通…...

高效工作流:用Mermaid绘制你的专属流程图;如何在Vue3中导入mermaid绘制流程图

目录 高效工作流:用Mermaid绘制你的专属流程图 一、流程图的使用场景 1.1、流程图flowChart 1.2、使用场景 二、如何使用mermaid画出优雅的流程图 2.1、流程图添加图名 2.2、定义图类型与方向 2.3、节点形状定义 2.3.1、规定语法 2.3.2、不同节点案例 2.…...

uniApp通过xgplayer(西瓜播放器)接入视频实时监控

🚀 个人简介:某大型国企资深软件开发工程师,信息系统项目管理师、CSDN优质创作者、阿里云专家博主,华为云云享专家,分享前端后端相关技术与工作常见问题~ 💟 作 者:码喽的自我修养&#x1f9…...

ws 配置 IngressRoute 和 http一样

ws 配置 IngressRoute 和 http一样 apiVersion: traefik.containo.us/v1alpha1 kind: IngressRoute apiVersion: traefik.containo.us/v1alpha1 kind: IngressRoute metadata:name: web-ws-ingressroutenamespace: starp spec:entryPoints:- webroutes:- match: Host(webws.we…...

IMX6ULL的IOMUXC寄存器和SNVS复用寄存器似乎都是对引脚指定复用功能的,那二者有何区别?

IMX6ULL 的 IOMUXC 和 SNVS(Secure Non-Volatile Storage)复用寄存器都是用于配置引脚功能的,但它们的作用范围、目的和使用场景存在明显区别。以下是它们的差异分析: 1. IOMUXC(I/O Multiplexer Control)寄…...

LabVIEW实现动态水球图的方法

水球图是一种直观展示百分比数据的图表,常用于数据监测与展示。LabVIEW 虽不直接支持水球图绘制,但可通过图片控件动态绘制波形,或借助 HTMLCSS 的 Web 控件实现。此外,还可以结合 Python 等第三方工具生成水球图,LabV…...

【江协STM32】11-2/3 W25Q64简介、软件SPI读写W25Q64

1. W25Q64简介 W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景存储介质:Nor Flash(闪存)时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)存储容…...

《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识

目录 2.1 几何学 向量的内积和外积 旋转矩阵 旋转向量 四元数 李群和李代数 SO(3)上的 BCH 线性近似式 2.2 运动学 李群视角下的运动学 SO(3) t 上的运动学 线速度和加速度 扰动模型和雅可比矩阵 典型算例:对向量进行旋转 典型算例:旋转的复合 2.3 …...

算法日记2:洛谷p3853路标设置(二分答案)

一、题目: 二、解题思路: 2.1:首先,我们二分空旷指数 1、因为题目中要求我们求解最大值最小应该是属于第二类模型2.也就是说,当check()函数为true时候,说明这个空旷指数是成立的,对应的路标数…...

浅谈云计算06 | 云管理系统架构

云管理系统架构 一、云管理系统架构(一)远程管理系统(二)资源管理系统(三)SLA 管理系统(四)计费管理系统 二、安全与可靠性保障(一)数据安全防线(…...

Blender常规设置

移动:Shift鼠标中键 旋转:鼠标中键 缩放:Ctrl鼠标中键...

c++ 中的容器 vector、deque 和 list 的区别

表格汇总: 容器存储结构随机访问性能中间插入/删除性能两端插入/删除性能内存管理特点迭代器类型适用场景vector连续存储的动态数组 O ( 1 ) O(1) O(1) O ( n ) O(n) O(n)(需要移动元素)末尾: O ( 1 ) O(1) O(1),头部…...

【物流管理系统 - IDEAJavaSwingMySQL】基于Java实现的物流管理系统导入IDEA教程

有问题请留言或私信 步骤 下载项目源码:项目源码 解压项目源码到本地 打开IDEA 左上角:文件 → 新建 → 来自现有源代码的项目 找到解压在本地的项目源代码文件,点击确定,根据图示步骤继续导入项目 查看项目目录&#xff…...

数据集-目标检测系列- 电话 测数据集 call_phone >> DataBall

数据集-目标检测系列- 电话 测数据集 call DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” 贵在坚持! …...

VUE3 自定义指令的介绍

自定义指令的概述 在 Vue 中,自定义指令是一种机制,允许开发者在模板中直接操作 DOM 元素,执行一些低级别的操作。Vue 提供了几个内置指令(如 v-if、v-for、v-model 等),但当我们需要一些特定功能时&#…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

爬虫基础学习day2

# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

DBLP数据库是什么?

DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...