Debye-Einstein-模型拟合比热容Python脚本
固体比热模型中的德拜模型和爱因斯坦模型是固体物理学中用于估算固体热容的两种重要原子振动模型。
爱因斯坦模型基于三种假设:1.晶格中的每一个原子都是三维量子谐振子;2.原子不互相作用;3.所有的原子都以相同的频率振动(与德拜模型不同)。
在高温下,爱因斯坦模型与实验结果一致,特别是与杜隆-珀替定律相符。
德拜模型将晶体中的原子振动视为连续弹性介质中传播的弹性波。固体的热容主要由低频的声学支声子贡献,存在截止频率,并未考虑光学支声子的贡献。在低温区与实验结果高度一致。
基本设置
import numpy as np
import os
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import scipy.integrate as integrate
from scipy.integrate import quad
R = 8.3144 # unit: J/ (mol·K)
N = 10 #number of atoms
n = 0.5 #Debye/(Debye+Einstein)
names = ["data.dat"]
colors = 'rgbmpyckrgbmpyc'
数据读入
def readata(name):
try:
data = np.loadtxt(name)
T = data[:, 0]
T = np.flipud(T)
HC = data[:, 1] # HC
HC = np.flipud(HC)
#print(f"Data read from {name}:")
#print("T:", T)
#print("HC:", HC)
return T, HC
except ValueError:
print('empty value encountered in', name)
return None, None
德拜模型
def intdebye(x):
return x**4 * np.exp(x) / (np.exp(x) - 1)**2
HC_calc_debye = []
for Ti in T:
A1 = quad(intdebye, 0, ThetaD / Ti)[0]
debye_value = 9 * R * N * (Ti / ThetaD)**3 * A1
HC_calc_debye.append(debye_value)
HC_calc_debye = np.array(HC_calc_debye)
爱因斯坦模型
HC_calc_Einstein = []
for Ti in T:
einstein_value = 3 * R * N * (ThetaE / Ti)**2 * np.exp(ThetaE / Ti) / (np.exp(ThetaE / Ti) - 1)**2
HC_calc_Einstein.append(einstein_value)
HC_calc_Einstein = np.array(HC_calc_Einstein)
HC模型混合(将D和E模型填入)
def HC_lattice(T, ThetaD, ThetaE):
HC_lattice = n * HC_calc_debye + (1 - n) * HC_calc_Einstein
return HC_lattice
磁熵或相变熵值计算和统计
def S_CT(T, C_mag):
CoT = C_mag / T
S = np.cumsum(CoT)
#print("S:", S)
return S
S_integral = integrate_S(T, S, 0, 50)
#print(f'n={n:.1f}, S_integral from 0 to 50: {S_integral:.3f}')
print("S:", S_integral)
return S_integral
拟合区间函数设定
def FitRange(lower, upper, numbers):
ii = np.argmin(np.abs(numbers - lower))
jj = np.argmin(np.abs(numbers - upper))
return min(ii, jj), max(ii, jj)
#lower, upper = FitRange(25, 200, T) # claim the lower and upper range of fitting
#popt, pcov = curve_fit(HC_lattice, T[lower:upper], HC[lower:upper])
读入数据拟合和绘图
for i, name in enumerate(names):
print(name)
T, HC = readata(name)
if T is not None and HC is not None:
if 'data' in name:
color = colors[i]
plt.subplot(2,2,1)
plt.plot(T, HC, color + 'o', label=name)
plt.xlabel('T(K)')
plt.ylabel('HC(J/K/mol)')
plt.legend()
lower, upper = FitRange(25, 200, T) # claim the lower and upper range of fitting
popt, pcov = curve_fit(HC_lattice, T[lower:upper], HC[lower:upper])
ThetaD,ThetaE=popt
print('fit: ThetaD=%5.3f, ThetaE=%5.3f' % (ThetaD,ThetaE))
plt.subplot(2,2,2)
plt.plot(T, HC_lattice(T, *popt), 'k-', label="HC_lattice")
plt.plot(T, HC, color + '*', label="HC_exp")
plt.xlabel('T(K)')
plt.ylabel(r'$HC(J/K/mol)$')
plt.legend()
C_mag = HC - HC_lattice(T, *popt)
plt.subplot(2,2,3)
plt.plot(T, C_mag, 'k*', label="C_mag")
plt.plot(T, HC, color + '*')
plt.xlabel('T(K)')
plt.ylabel(r'$HC_mag(J/K/mol)$')
plt.legend()
plt.subplot(2,2,4)
S_mag = S_CT(T[1:], C_mag[1:])
plt.plot(T[1:], S_mag, 'k-', label="S_mag")
plt.plot([0, 300], [R * np.log(2 * 5 / 2 + 1), R * np.log(2 * 5 / 2 + 1)], 'r-', label="S=5/2")
plt.plot([0, 300], [R * np.log(2 * 4 / 2 + 1), R * np.log(2 * 4 / 2 + 1)], 'b-', label="S=2")
plt.plot([0, 300], [R * np.log(2 * 4 / 4 + 1), R * np.log(2 * 4 / 4 + 1)], 'm-', label="S=1")
plt.legend()
plt.show()
#plt.savefig("1.png")
相关文章:

Debye-Einstein-模型拟合比热容Python脚本
固体比热模型中的德拜模型和爱因斯坦模型是固体物理学中用于估算固体热容的两种重要原子振动模型。 爱因斯坦模型基于三种假设:1.晶格中的每一个原子都是三维量子谐振子;2.原子不互相作用;3.所有的原子都以相同的频率振动(与德拜…...

OpenCV的图像分割
1、基本概念 图像分割是计算机视觉和图像处理中的一个关键步骤,它指的是将图像划分为多个区域或对象的过程。这些区域或对象在某种特性(如颜色、形状、纹理或亮度等)上是一致的或相似的,而在不同区域之间则存在明显的差异。图像分…...

【源码+文档+调试讲解】农产品研究报告管理系统
摘 要 农产品研究报告管理系统是一个旨在收集、整理、存储和分析农产品相关研究数据的综合性平台。农产品研究报告管理系统通常包含一个强大的数据库,它能够处理大量的研究数据,并对这些数据进行有效的管理和备份。农产品研究报告管理系统是现代农业科学…...

【STM32-学习笔记-7-】USART串口通信
文章目录 USART串口通信Ⅰ、硬件电路Ⅱ、常见的电平标准Ⅲ、串口参数及时序Ⅳ、STM32的USART简介数据帧起始位侦测数据采样波特率发生器 Ⅴ、USART函数介绍Ⅵ、USART_InitTypeDef结构体参数1、USART_BaudRate2、USART_WordLength3、USART_StopBits4、USART_Parity5、USART_Mode…...

高可用虚拟IP-keepalived
个人觉得华为云这个文档十分详细:使用虚拟IP和Keepalived搭建高可用Web集群_弹性云服务器 ECS_华为云 应用场景:虚拟IP技术。虚拟IP,就是一个未分配给真实主机的IP,也就是说对外提供数据库服务器的主机除了有一个真实IP外还有一个…...

AI多模态技术介绍:视觉语言模型(VLMs)指南
本文作者:AIGCmagic社区 刘一手 AI多模态全栈学习路线 在本文中,我们将探讨用于开发视觉语言模型(Vision Language Models,以下简称VLMs)的架构、评估策略和主流数据集,以及该领域的关键挑战和未来趋势。通…...

高效工作流:用Mermaid绘制你的专属流程图;如何在Vue3中导入mermaid绘制流程图
目录 高效工作流:用Mermaid绘制你的专属流程图 一、流程图的使用场景 1.1、流程图flowChart 1.2、使用场景 二、如何使用mermaid画出优雅的流程图 2.1、流程图添加图名 2.2、定义图类型与方向 2.3、节点形状定义 2.3.1、规定语法 2.3.2、不同节点案例 2.…...

uniApp通过xgplayer(西瓜播放器)接入视频实时监控
🚀 个人简介:某大型国企资深软件开发工程师,信息系统项目管理师、CSDN优质创作者、阿里云专家博主,华为云云享专家,分享前端后端相关技术与工作常见问题~ 💟 作 者:码喽的自我修养ǹ…...
ws 配置 IngressRoute 和 http一样
ws 配置 IngressRoute 和 http一样 apiVersion: traefik.containo.us/v1alpha1 kind: IngressRoute apiVersion: traefik.containo.us/v1alpha1 kind: IngressRoute metadata:name: web-ws-ingressroutenamespace: starp spec:entryPoints:- webroutes:- match: Host(webws.we…...
IMX6ULL的IOMUXC寄存器和SNVS复用寄存器似乎都是对引脚指定复用功能的,那二者有何区别?
IMX6ULL 的 IOMUXC 和 SNVS(Secure Non-Volatile Storage)复用寄存器都是用于配置引脚功能的,但它们的作用范围、目的和使用场景存在明显区别。以下是它们的差异分析: 1. IOMUXC(I/O Multiplexer Control)寄…...

LabVIEW实现动态水球图的方法
水球图是一种直观展示百分比数据的图表,常用于数据监测与展示。LabVIEW 虽不直接支持水球图绘制,但可通过图片控件动态绘制波形,或借助 HTMLCSS 的 Web 控件实现。此外,还可以结合 Python 等第三方工具生成水球图,LabV…...

【江协STM32】11-2/3 W25Q64简介、软件SPI读写W25Q64
1. W25Q64简介 W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景存储介质:Nor Flash(闪存)时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)存储容…...

《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识
目录 2.1 几何学 向量的内积和外积 旋转矩阵 旋转向量 四元数 李群和李代数 SO(3)上的 BCH 线性近似式 2.2 运动学 李群视角下的运动学 SO(3) t 上的运动学 线速度和加速度 扰动模型和雅可比矩阵 典型算例:对向量进行旋转 典型算例:旋转的复合 2.3 …...

算法日记2:洛谷p3853路标设置(二分答案)
一、题目: 二、解题思路: 2.1:首先,我们二分空旷指数 1、因为题目中要求我们求解最大值最小应该是属于第二类模型2.也就是说,当check()函数为true时候,说明这个空旷指数是成立的,对应的路标数…...

浅谈云计算06 | 云管理系统架构
云管理系统架构 一、云管理系统架构(一)远程管理系统(二)资源管理系统(三)SLA 管理系统(四)计费管理系统 二、安全与可靠性保障(一)数据安全防线(…...

Blender常规设置
移动:Shift鼠标中键 旋转:鼠标中键 缩放:Ctrl鼠标中键...
c++ 中的容器 vector、deque 和 list 的区别
表格汇总: 容器存储结构随机访问性能中间插入/删除性能两端插入/删除性能内存管理特点迭代器类型适用场景vector连续存储的动态数组 O ( 1 ) O(1) O(1) O ( n ) O(n) O(n)(需要移动元素)末尾: O ( 1 ) O(1) O(1),头部…...

【物流管理系统 - IDEAJavaSwingMySQL】基于Java实现的物流管理系统导入IDEA教程
有问题请留言或私信 步骤 下载项目源码:项目源码 解压项目源码到本地 打开IDEA 左上角:文件 → 新建 → 来自现有源代码的项目 找到解压在本地的项目源代码文件,点击确定,根据图示步骤继续导入项目 查看项目目录ÿ…...

数据集-目标检测系列- 电话 测数据集 call_phone >> DataBall
数据集-目标检测系列- 电话 测数据集 call DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” 贵在坚持! …...
VUE3 自定义指令的介绍
自定义指令的概述 在 Vue 中,自定义指令是一种机制,允许开发者在模板中直接操作 DOM 元素,执行一些低级别的操作。Vue 提供了几个内置指令(如 v-if、v-for、v-model 等),但当我们需要一些特定功能时&#…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...