399. 除法求值【 力扣(LeetCode) 】
文章目录
- 零、LeetCode 原题
- 一、题目描述
- 二、测试用例
- 三、解题思路
- 3.1 图的路径搜索
- 3.2 路径压缩
- 四、参考代码
- 4.1 图的路径搜索
- 4.2 路径压缩
零、LeetCode 原题
399. 除法求值
一、题目描述
给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。
另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。
返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。
注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。
注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。
二、测试用例
示例 1:
输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
注意:x 是未定义的 => -1.0
示例 2:
输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:
输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]
提示:
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj 由小写英文字母与数字组成
三、解题思路
3.1 图的路径搜索
- 基本思路:
如果将每个 equations 看作 边 ,value 看作 边权,则 queries 相当于查询某条路径的权重和。 - 具体思路:
- 构建有向图
- 路径搜索
- 如果顶点不存在,则存入 -1 ;
- 如果顶点相同,则存入 1;
- 使用深度搜索进行路径搜索,查找该路径并计算权重累加和。
3.2 路径压缩
- 基本思路:
就在上一个方法的基础上,进行路径压缩即可。每搜索完一个,将结果保存。 - 具体思路:
同上,在最后一步搜索完路径时,保存结果,可以作为下次搜索使用。
四、参考代码
4.1 图的路径搜索
时间复杂度: O ( k ∣ E ∣ ) \Omicron(k|E|) O(k∣E∣)【查找 k 条路径,每条路径最坏情况就是遍历所有的边】
空间复杂度: O ( ∣ E ∣ ) \Omicron(|E|) O(∣E∣)【使用空间有:图的边,图的顶点(最坏2倍边的空间),递归深度(最坏遍历所有边),已搜索顶点集合(最坏搜索过所有顶点)】
class Solution {
public:unordered_map<string, unordered_map<string, double>> m;double dfs(string now, string obj, unordered_set<string>& used) {if (m.count(now) == 0)return 0;if (m[now].count(obj))return m[now][obj];for (const auto& next : m[now]) {if (used.count(next.first))continue;used.emplace(next.first);auto ans = dfs(next.first, obj, used);if (ans)return ans * next.second;}return 0;}vector<double> calcEquation(vector<vector<string>>& equations,vector<double>& values,vector<vector<string>>& queries) {vector<double> ans;for (int i = 0; i < equations.size(); i++) {m[equations[i][0]].emplace(equations[i][1], values[i]);m[equations[i][1]].emplace(equations[i][0], 1 / values[i]);}for (int i = 0; i < queries.size(); i++) {if (m.count(queries[i][0]) == 0 || m.count(queries[i][1]) == 0) {ans.emplace_back(-1.0);} else if (queries[i][0] == queries[i][1]) {ans.emplace_back(1.0);} else {unordered_set<string> used;ans.emplace_back(dfs(queries[i][0], queries[i][1], used));if (ans.back() == 0.0)ans.back() = -1.0;}}return ans;}
};
4.2 路径压缩
时间复杂度: O ( k α ( ∣ E ∣ ) ) \Omicron(k\alpha(|E|)) O(kα(∣E∣))【 α ( n ) \alpha(n) α(n) 是一个增长很慢的函数,其值都不超过 4】
空间复杂度: O ( ∣ E ∣ ) \Omicron(|E|) O(∣E∣)
class Solution {
public:unordered_map<string, unordered_map<string, double>> m;double dfs(string now, string obj, unordered_set<string>& used) {if (m.count(now) == 0)return 0;if (m[now].count(obj))return m[now][obj];for (const auto& next : m[now]) {if (used.count(next.first))continue;used.emplace(next.first);auto ans = dfs(next.first, obj, used);if (ans)return ans * next.second;}return 0;}vector<double> calcEquation(vector<vector<string>>& equations,vector<double>& values,vector<vector<string>>& queries) {vector<double> ans;for (int i = 0; i < equations.size(); i++) {m[equations[i][0]].emplace(equations[i][1], values[i]);m[equations[i][1]].emplace(equations[i][0], 1 / values[i]);}for (int i = 0; i < queries.size(); i++) {if (m.count(queries[i][0]) == 0 || m.count(queries[i][1]) == 0) {ans.emplace_back(-1.0);} else if (queries[i][0] == queries[i][1]) {ans.emplace_back(1.0);} else {unordered_set<string> used;ans.emplace_back(dfs(queries[i][0], queries[i][1], used));if (ans.back() == 0.0)ans.back() = -1.0;else{ // 保存结果m[queries[i][0]].emplace(queries[i][1],ans.back()); m[queries[i][1]].emplace(queries[i][0],1/ans.back()); }}}return ans;}
};
相关文章:
399. 除法求值【 力扣(LeetCode) 】
文章目录 零、LeetCode 原题一、题目描述二、测试用例三、解题思路3.1 图的路径搜索3.2 路径压缩 四、参考代码4.1 图的路径搜索4.2 路径压缩 零、LeetCode 原题 399. 除法求值 一、题目描述 给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,…...
算法日记1:洛谷p2678跳石头(二分答案)
1、题目 二、题解: 2.1解题思路: 1.题目要求求出最小值最大,明显的二分答案题目,所以我们可以二分可以跳跃距离int l-1,rL1; 2.此时我们思考lmid和rmid的处理,当我们的check(mid)为true时候 表明我们此时的mid是符合要求的, 那么…...
Unity shader中真的可以动态关闭Stencil Test吗?
这个问题很多年前就有人问了: https://discussions.unity.com/t/how-to-disable-the-stencil-block-via-shader-properties/600273/1 最后的答案是: set [_StencilComp] to CompareFunction.Disabled to disable the Stencil Op completely. 但是我测试…...
YOLOv9改进,YOLOv9自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,适合目标检测、分割任务
摘要 论文提出了一种新的搜索框架,名为 HyCTAS,用于在给定任务中自动搜索高效的神经网络架构。HyCTAS框架结合了高分辨率表示和自注意力机制,通过多目标优化搜索,找到了一种在性能和计算效率之间的平衡。 # 理论介绍 自注意力(Self-Attention)机制是HyCTAS框架中的一个…...
计算机网络 (36)TCP可靠传输的实现
前言 TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP通过多种机制实现可靠传输,这些机制主要包括连接管理、序列号和确认应答机制、重传机制、流量控制、拥塞控制等。 一、连接管理 TCP使用三次握手࿰…...
Git版本控制 - 创建使用Repository
Git版本控制 – 创建使用Repository Version Control with Git - Create and Use Repository By JacksonML 上文提到,Git是一种分布式版本控制系统。作为全球范围内广泛使用的工具,如何将项目分步骤运用到其中呢? 本文简要介绍如何用Git工…...
MySQL —— 在CentOS9下安装MySQL
MySQL —— 在CentOS9下安装MySQL 1.查看自己操作系统的版本2.找到对应的安装源3.上传我们在windows下,下载的文件,解压4.执行rpm命令,启用MySQL8仓库5.执行dnf install -y mysql-community-server6.设置开机自启动7.获得初始密码8.登录MySQL…...
LeetCode 热题 100_腐烂的橘子(52_994_中等_C++)(图;广度优先遍历(队列))
LeetCode 热题 100_腐烂的橘子(52_994) 题目描述:输入输出样例:题解:解题思路:思路一(广度优先遍历(队列)): 代码实现代码实现(思路一…...
Nginx 可观测性最佳实践
Nginx 介绍 Nginx 是一个开源、轻量级、高性能的 HTTP 和反向代理服务器,也可以用于 IMAP/POP3 代理服务器。Nginx 因其采用的异步非阻塞工作模型,使其具备高并发、低资源消耗的特性。高度模块化设计也使得 Nginx 具备很好的扩展性,在处理静…...
LabVIEW光流跟踪算法
1. 光流跟踪算法的概述 光流(Optical Flow)是一种图像处理技术,用于估算图像中像素点的运动。通过比较连续帧图像,光流算法可以分析图像中的运动信息,广泛用于目标跟踪、运动检测和视频处理等场景。该示例使用了NI Vi…...
Jira用例自动去除summary重复用例
title: Jira用例自动去除summary重复用例 tags: - jira - python categories: - python一、背景与需求二、解决方案思路三、实施步骤本文永久更新地址: 在使用 Jira 进行项目管理时,测试用例的维护至关重要。随着项目推进,用例数量增多,可能…...
基于openEuler22.03SP4部署Prometheus+Grafana
测试环境 Virtual Box,openEuler-22.03-LTS-SP4-x86_64-dvd.iso,4 vCPU, 8G RAM, 60 vDisk。最小化安装。需联网。 系统环境 关闭防火墙 systemctl stop firewalld systemctl disable firewalld systemctl status firewalld selinux关闭 sed -ri…...
泛目录和泛站有什么差别
啥是 SEO 泛目录? 咱先来说说 SEO 泛目录是啥。想象一下,你有一个巨大的图书馆,里面的书架上摆满了各种各样的书,每一本书都代表着一个网页。而 SEO 泛目录呢,就像是一个超级图书管理员,它的任务就是把这些…...
css 布局及动画应用(flex+transform+transition+animation)
文章目录 css 布局及动画应用animationtransform,transition,animation 综合应用实例代码实例解释 css 布局及动画应用 Display用法 作用:用于控制元素的显示类型,如块级元素、内联元素、无显示等。常见属性值及示例:…...
springboot vue uniapp 仿小红书 1:1 还原 (含源码演示)
线上预览: 移动端 http://8.146.211.120:8081/ 管理端 http://8.146.211.120:8088/ 小红书凭借优秀的产品体验 和超高人气 目前成为笔记类产品佼佼者 此项目将详细介绍如何使用Vue.js和Spring Boot 集合uniapp 开发一个仿小红书应用,凭借uniapp 可以在h5 小程序 app…...
lombok在高版本idea中注解不生效的解决
环境: IntelliJ IDEA 2024.3.1.1 Spring Boot Maven 问题描述 使用AllArgsConstructor注解一个用户类,然后调用全参构造方法创建对象,出现错误: java: 无法将类 com.itheima.pojo.User中的构造器 User应用到给定类型; 需要:…...
跨境电商领域云手机之选:亚矩阵云手机的卓越优势
在跨境电商蓬勃发展的当下,云手机已成为众多企业拓展海外市场的得力助手。亚矩阵云手机凭借其独特优势,在竞争激烈的云手机市场中崭露头角。不过,鉴于市场上云手机服务供应商繁多,企业在抉择时需对诸多要素予以审慎考量。 跨境电商…...
Linux第二课:LinuxC高级 学习记录day02
2.4、shell中的特殊字符 2.4.4、命令置换符 或者 $() 反引号:esc下面的按键,英文状态下直接按 功能:将一个命令的输出作为另一个命令的参数 echo 不会认为hostname是一个命令 加上 之后,先执行hostname,拿到主机名…...
6. NLP自然语言处理(Natural Language Processing)
自然语言是指人类日常使用的语言,如中文、英语、法语等。 自然语言处理是人工智能(AI)领域中的一个重要分支,它结合了计算机科学、语言学和统计学的方法,通过算法对文本和语音进行分析,使计算机能够理解、解…...
win10电脑 定时关机
win10电脑 定时关机 https://weibo.com/ttarticle/p/show?id2309405110707766296723 二、使用任务计划程序设置定时关机打开任务计划程序: 按下“Win S”组合键,打开搜索框。 在搜索框中输入“任务计划程序”,然后点击搜索结果中的“任务…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
