当前位置: 首页 > news >正文

399. 除法求值【 力扣(LeetCode) 】

文章目录

  • 零、LeetCode 原题
  • 一、题目描述
  • 二、测试用例
  • 三、解题思路
    • 3.1 图的路径搜索
    • 3.2 路径压缩
  • 四、参考代码
    • 4.1 图的路径搜索
    • 4.2 路径压缩

零、LeetCode 原题


399. 除法求值

一、题目描述

给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] = [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi = values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。

另有一些以数组 queries 表示的问题,其中 queries[j] = [Cj, Dj] 表示第 j 个问题,请你根据已知条件找出 Cj / Dj = ? 的结果作为答案。

返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0 替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0 替代这个答案。

注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。

注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。

二、测试用例

示例 1:

输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000]
解释:
条件:a / b = 2.0, b / c = 3.0
问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
结果:[6.0, 0.5, -1.0, 1.0, -1.0 ]
注意:x 是未定义的 => -1.0

示例 2:

输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
输出:[3.75000,0.40000,5.00000,0.20000]

示例 3:

输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
输出:[0.50000,2.00000,-1.00000,-1.00000]

提示:

1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj 由小写英文字母与数字组成

三、解题思路

3.1 图的路径搜索

  1. 基本思路:
      如果将每个 equations 看作 边 ,value 看作 边权,则 queries 相当于查询某条路径的权重和。
  2. 具体思路:
    • 构建有向图
    • 路径搜索
      • 如果顶点不存在,则存入 -1 ;
      • 如果顶点相同,则存入 1;
      • 使用深度搜索进行路径搜索,查找该路径并计算权重累加和。

3.2 路径压缩

  1. 基本思路:
      就在上一个方法的基础上,进行路径压缩即可。每搜索完一个,将结果保存。
  2. 具体思路:
      同上,在最后一步搜索完路径时,保存结果,可以作为下次搜索使用。

四、参考代码

4.1 图的路径搜索

时间复杂度: O ( k ∣ E ∣ ) \Omicron(k|E|) O(kE)【查找 k 条路径,每条路径最坏情况就是遍历所有的边】
空间复杂度: O ( ∣ E ∣ ) \Omicron(|E|) O(E)【使用空间有:图的边,图的顶点(最坏2倍边的空间),递归深度(最坏遍历所有边),已搜索顶点集合(最坏搜索过所有顶点)】

class Solution {
public:unordered_map<string, unordered_map<string, double>> m;double dfs(string now, string obj, unordered_set<string>& used) {if (m.count(now) == 0)return 0;if (m[now].count(obj))return m[now][obj];for (const auto& next : m[now]) {if (used.count(next.first))continue;used.emplace(next.first);auto ans = dfs(next.first, obj, used);if (ans)return ans * next.second;}return 0;}vector<double> calcEquation(vector<vector<string>>& equations,vector<double>& values,vector<vector<string>>& queries) {vector<double> ans;for (int i = 0; i < equations.size(); i++) {m[equations[i][0]].emplace(equations[i][1], values[i]);m[equations[i][1]].emplace(equations[i][0], 1 / values[i]);}for (int i = 0; i < queries.size(); i++) {if (m.count(queries[i][0]) == 0 || m.count(queries[i][1]) == 0) {ans.emplace_back(-1.0);} else if (queries[i][0] == queries[i][1]) {ans.emplace_back(1.0);} else {unordered_set<string> used;ans.emplace_back(dfs(queries[i][0], queries[i][1], used));if (ans.back() == 0.0)ans.back() = -1.0;}}return ans;}
};

4.2 路径压缩

时间复杂度: O ( k α ( ∣ E ∣ ) ) \Omicron(k\alpha(|E|)) O(kα(E)) α ( n ) \alpha(n) α(n) 是一个增长很慢的函数,其值都不超过 4】
空间复杂度: O ( ∣ E ∣ ) \Omicron(|E|) O(E)

class Solution {
public:unordered_map<string, unordered_map<string, double>> m;double dfs(string now, string obj, unordered_set<string>& used) {if (m.count(now) == 0)return 0;if (m[now].count(obj))return m[now][obj];for (const auto& next : m[now]) {if (used.count(next.first))continue;used.emplace(next.first);auto ans = dfs(next.first, obj, used);if (ans)return ans * next.second;}return 0;}vector<double> calcEquation(vector<vector<string>>& equations,vector<double>& values,vector<vector<string>>& queries) {vector<double> ans;for (int i = 0; i < equations.size(); i++) {m[equations[i][0]].emplace(equations[i][1], values[i]);m[equations[i][1]].emplace(equations[i][0], 1 / values[i]);}for (int i = 0; i < queries.size(); i++) {if (m.count(queries[i][0]) == 0 || m.count(queries[i][1]) == 0) {ans.emplace_back(-1.0);} else if (queries[i][0] == queries[i][1]) {ans.emplace_back(1.0);} else {unordered_set<string> used;ans.emplace_back(dfs(queries[i][0], queries[i][1], used));if (ans.back() == 0.0)ans.back() = -1.0;else{ // 保存结果m[queries[i][0]].emplace(queries[i][1],ans.back()); m[queries[i][1]].emplace(queries[i][0],1/ans.back()); }}}return ans;}
};

相关文章:

399. 除法求值【 力扣(LeetCode) 】

文章目录 零、LeetCode 原题一、题目描述二、测试用例三、解题思路3.1 图的路径搜索3.2 路径压缩 四、参考代码4.1 图的路径搜索4.2 路径压缩 零、LeetCode 原题 399. 除法求值 一、题目描述 给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件&#xff0c;…...

算法日记1:洛谷p2678跳石头(二分答案)

1、题目 二、题解&#xff1a; 2.1解题思路: 1.题目要求求出最小值最大&#xff0c;明显的二分答案题目&#xff0c;所以我们可以二分可以跳跃距离int l-1,rL1; 2.此时我们思考lmid和rmid的处理,当我们的check(mid)为true时候 表明我们此时的mid是符合要求的&#xff0c; 那么…...

Unity shader中真的可以动态关闭Stencil Test吗?

这个问题很多年前就有人问了&#xff1a; https://discussions.unity.com/t/how-to-disable-the-stencil-block-via-shader-properties/600273/1 最后的答案是&#xff1a; set [_StencilComp] to CompareFunction.Disabled to disable the Stencil Op completely. 但是我测试…...

YOLOv9改进,YOLOv9自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,适合目标检测、分割任务

摘要 论文提出了一种新的搜索框架,名为 HyCTAS,用于在给定任务中自动搜索高效的神经网络架构。HyCTAS框架结合了高分辨率表示和自注意力机制,通过多目标优化搜索,找到了一种在性能和计算效率之间的平衡。 # 理论介绍 自注意力(Self-Attention)机制是HyCTAS框架中的一个…...

计算机网络 (36)TCP可靠传输的实现

前言 TCP&#xff08;传输控制协议&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP通过多种机制实现可靠传输&#xff0c;这些机制主要包括连接管理、序列号和确认应答机制、重传机制、流量控制、拥塞控制等。 一、连接管理 TCP使用三次握手&#xff0…...

Git版本控制 - 创建使用Repository

Git版本控制 – 创建使用Repository Version Control with Git - Create and Use Repository By JacksonML 上文提到&#xff0c;Git是一种分布式版本控制系统。作为全球范围内广泛使用的工具&#xff0c;如何将项目分步骤运用到其中呢&#xff1f; 本文简要介绍如何用Git工…...

MySQL —— 在CentOS9下安装MySQL

MySQL —— 在CentOS9下安装MySQL 1.查看自己操作系统的版本2.找到对应的安装源3.上传我们在windows下&#xff0c;下载的文件&#xff0c;解压4.执行rpm命令&#xff0c;启用MySQL8仓库5.执行dnf install -y mysql-community-server6.设置开机自启动7.获得初始密码8.登录MySQL…...

LeetCode 热题 100_腐烂的橘子(52_994_中等_C++)(图;广度优先遍历(队列))

LeetCode 热题 100_腐烂的橘子&#xff08;52_994&#xff09; 题目描述&#xff1a;输入输出样例&#xff1a;题解&#xff1a;解题思路&#xff1a;思路一&#xff08;广度优先遍历&#xff08;队列&#xff09;&#xff09;&#xff1a; 代码实现代码实现&#xff08;思路一…...

Nginx 可观测性最佳实践

Nginx 介绍 Nginx 是一个开源、轻量级、高性能的 HTTP 和反向代理服务器&#xff0c;也可以用于 IMAP/POP3 代理服务器。Nginx 因其采用的异步非阻塞工作模型&#xff0c;使其具备高并发、低资源消耗的特性。高度模块化设计也使得 Nginx 具备很好的扩展性&#xff0c;在处理静…...

LabVIEW光流跟踪算法

1. 光流跟踪算法的概述 光流&#xff08;Optical Flow&#xff09;是一种图像处理技术&#xff0c;用于估算图像中像素点的运动。通过比较连续帧图像&#xff0c;光流算法可以分析图像中的运动信息&#xff0c;广泛用于目标跟踪、运动检测和视频处理等场景。该示例使用了NI Vi…...

Jira用例自动去除summary重复用例

title: Jira用例自动去除summary重复用例 tags: - jira - python categories: - python一、背景与需求二、解决方案思路三、实施步骤本文永久更新地址: 在使用 Jira 进行项目管理时&#xff0c;测试用例的维护至关重要。随着项目推进&#xff0c;用例数量增多&#xff0c;可能…...

基于openEuler22.03SP4部署Prometheus+Grafana

测试环境 Virtual Box&#xff0c;openEuler-22.03-LTS-SP4-x86_64-dvd.iso&#xff0c;4 vCPU, 8G RAM, 60 vDisk。最小化安装。需联网。 系统环境 关闭防火墙 systemctl stop firewalld systemctl disable firewalld systemctl status firewalld selinux关闭 sed -ri…...

泛目录和泛站有什么差别

啥是 SEO 泛目录&#xff1f; 咱先来说说 SEO 泛目录是啥。想象一下&#xff0c;你有一个巨大的图书馆&#xff0c;里面的书架上摆满了各种各样的书&#xff0c;每一本书都代表着一个网页。而 SEO 泛目录呢&#xff0c;就像是一个超级图书管理员&#xff0c;它的任务就是把这些…...

css 布局及动画应用(flex+transform+transition+animation)

文章目录 css 布局及动画应用animationtransform&#xff0c;transition&#xff0c;animation 综合应用实例代码实例解释 css 布局及动画应用 Display用法 作用&#xff1a;用于控制元素的显示类型&#xff0c;如块级元素、内联元素、无显示等。常见属性值及示例&#xff1a;…...

springboot vue uniapp 仿小红书 1:1 还原 (含源码演示)

线上预览: 移动端 http://8.146.211.120:8081/ 管理端 http://8.146.211.120:8088/ 小红书凭借优秀的产品体验 和超高人气 目前成为笔记类产品佼佼者 此项目将详细介绍如何使用Vue.js和Spring Boot 集合uniapp 开发一个仿小红书应用&#xff0c;凭借uniapp 可以在h5 小程序 app…...

lombok在高版本idea中注解不生效的解决

环境&#xff1a; IntelliJ IDEA 2024.3.1.1 Spring Boot Maven 问题描述 使用AllArgsConstructor注解一个用户类&#xff0c;然后调用全参构造方法创建对象&#xff0c;出现错误&#xff1a; java: 无法将类 com.itheima.pojo.User中的构造器 User应用到给定类型; 需要:…...

跨境电商领域云手机之选:亚矩阵云手机的卓越优势

在跨境电商蓬勃发展的当下&#xff0c;云手机已成为众多企业拓展海外市场的得力助手。亚矩阵云手机凭借其独特优势&#xff0c;在竞争激烈的云手机市场中崭露头角。不过&#xff0c;鉴于市场上云手机服务供应商繁多&#xff0c;企业在抉择时需对诸多要素予以审慎考量。 跨境电商…...

Linux第二课:LinuxC高级 学习记录day02

2.4、shell中的特殊字符 2.4.4、命令置换符 或者 $() 反引号&#xff1a;esc下面的按键&#xff0c;英文状态下直接按 功能&#xff1a;将一个命令的输出作为另一个命令的参数 echo 不会认为hostname是一个命令 加上 之后&#xff0c;先执行hostname&#xff0c;拿到主机名…...

6. NLP自然语言处理(Natural Language Processing)

自然语言是指人类日常使用的语言&#xff0c;如中文、英语、法语等。 自然语言处理是人工智能&#xff08;AI&#xff09;领域中的一个重要分支&#xff0c;它结合了计算机科学、语言学和统计学的方法&#xff0c;通过算法对文本和语音进行分析&#xff0c;使计算机能够理解、解…...

win10电脑 定时关机

win10电脑 定时关机 https://weibo.com/ttarticle/p/show?id2309405110707766296723 二、使用任务计划程序设置定时关机打开任务计划程序&#xff1a; 按下“Win S”组合键&#xff0c;打开搜索框。 在搜索框中输入“任务计划程序”&#xff0c;然后点击搜索结果中的“任务…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

Qwen系列之Qwen3解读:最强开源模型的细节拆解

文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...