PySpark广播表连接解决数据倾斜的完整案例
使用PySpark解决数据倾斜问题的完整案例,通过广播表连接的方式来优化性能。
- 准备数据
假设我们有两张表,一张大表 big_table 和一张小表 small_table ,小表将作为广播表。
from pyspark.sql import SparkSession# 初始化SparkSession
spark = SparkSession.builder.appName("Data Skew Example").getOrCreate()# 模拟大表数据
big_table = spark.createDataFrame([(i, f"value_{i}") for i in range(1000000)], ["id", "data"])# 模拟小表数据
small_table = spark.createDataFrame([(i, f"category_{i%10}") for i in range(100)], ["id", "category"])
- 查看广播表大小
import sys
from pyspark.sql.functions import col# 查看小表的大小,单位字节
small_table_size = small_table.select(col("*")).count() * sys.getsizeof(tuple(small_table.first()))
print(f"Size of small_table: {small_table_size} bytes")
- 初始连接(产生数据倾斜)
# 不使用广播进行连接,会产生数据倾斜joined_without_broadcast = big_table.join(small_table, "id")
- 使用广播表连接
from pyspark.sql.functions import broadcast# 使用广播表连接
joined_with_broadcast = big_table.join(broadcast(small_table), "id")
- 查看Spark WebUI分析数据倾斜
运行作业:在执行上述代码时,Spark会启动作业,可以通过Spark WebUI查看作业执行情况。在浏览器中访问 http://:4040 (这是Spark默认的WebUI端口,实际可能不同)。
查看阶段详情:进入“Jobs”页面,找到对应的作业,点击进入查看各阶段(Stage)详情。在阶段详情里,可以看到任务(Task)的执行时间分布。没有广播时,数据倾斜表现为部分任务执行时间远长于其他任务;使用广播后,任务执行时间应更均匀。
查看执行计划:也可以通过调用 joined_with_broadcast.explain() 查看执行计划,确认广播表是否正确应用。
# 查看执行计划
joined_with_broadcast.explain()
- 完整代码示例
from pyspark.sql import SparkSession
import sys
from pyspark.sql.functions import col, broadcast# 初始化SparkSession
spark = SparkSession.builder.appName("Data Skew Example").getOrCreate()# 模拟大表数据
big_table = spark.createDataFrame([(i, f"value_{i}") for i in range(1000000)], ["id", "data"])# 模拟小表数据
small_table = spark.createDataFrame([(i, f"category_{i%10}") for i in range(100)], ["id", "category"])# 查看小表的大小,单位字节
small_table_size = small_table.select(col("*")).count() * sys.getsizeof(tuple(small_table.first()))
print(f"Size of small_table: {small_table_size} bytes")# 不使用广播进行连接,会产生数据倾斜
joined_without_broadcast = big_table.join(small_table, "id")# 使用广播表连接
joined_with_broadcast = big_table.join(broadcast(small_table), "id")# 查看执行计划
joined_with_broadcast.explain()
这个案例先创建了大小两张表,查看小表大小以确认适合广播,演示了普通连接产生数据倾斜的情况,接着使用广播表连接解决该问题,并说明了如何从Spark WebUI查看数据倾斜的发生与解决效果。
相关文章:
PySpark广播表连接解决数据倾斜的完整案例
使用PySpark解决数据倾斜问题的完整案例,通过广播表连接的方式来优化性能。 准备数据 假设我们有两张表,一张大表 big_table 和一张小表 small_table ,小表将作为广播表。 from pyspark.sql import SparkSession# 初始化SparkSession spar…...

Chromium CDP 开发(十二):为自己的Domain建立custom_config.json
引言 本章详细介绍了如何为自定义的 CDP Domain 创建 custom_config.json 文件,并通过修改 BUILD.gn 文件来确保自定义的配置文件参与编译。我们通过 inspector_protocol_generate 配置段自动生成自定义 Domain 的头文件和实现文件,并成功将其集成到构建…...

【Vue】全局/局部组件使用流程(Vue2为例)
全局组件和局部组件区别 如何使用 全局组件:全局注册后,可以在任意页面中直接使用。局部组件:在页面中需要先导入子组件路径,注册组件才能使用。 适用场景 全局组件:适用于高频使用的组件,如导航栏、业…...
Vue.js组件开发详解
在现代前端开发中,Vue.js 凭借其简洁、高效、灵活的特性,成为了众多开发者的首选框架之一,而组件化开发则是 Vue.js 的核心优势。组件可以将复杂的 UI 界面拆分成一个个独立的、可复用的小块,极大地提高了开发效率和代码的可维护性…...

解决:ubuntu22.04中IsaacGymEnv保存视频报错的问题
1. IsaacGymEnvs项目介绍 IsaacGymEnvs:基于NVIDIA Isaac Gym的高效机器人训练环境 IsaacGymEnvs 是一个基于 NVIDIA Isaac Gym 的开源 Python 环境库,专为机器人训练提供高效的仿真环境。Isaac Gym 是由 NVIDIA 开发的一个高性能物理仿真引擎…...
深度学习camp-第J7周:对于ResNeXt-50算法的思考
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 📌你需要解决的疑问:这个代码是否有错?对错与否都请给出你的思考 📌打卡要求:请查找相关资料、逐步…...
java: 错误: 无效的源发行版:17解决办法
遇到“java: 错误: 无效的源发行版:17”的问题,通常是因为项目设置中指定的Java版本与当前环境不一致导致的。以下是几种可能的解决方案: 检查并升级Java版本:确保你已经安装了支持Java 17的JDK版本。你可以通过命令行输入java -v…...

Docker 安装开源的IT资产管理系统Snipe-IT
一、安装 1、创建docker-compose.yaml version: 3services:snipeit:container_name: snipeitimage: snipe/snipe-it:v6.1.2restart: alwaysports:- "8000:80"volumes:- ./logs:/var/www/html/storage/logsdepends_on:- mysqlenv_file:- .env.dockernetworks:- snip…...
Go语言封装加解密包(AES/DES/RSA)
Go语言封装加解密包(AES/DES/RSA) 1. Base64编码与解码2. AES加解密3. DES加解密4. RSA加解密5. SHA256哈希6. 单元测试1. AES加解密单元测试2. DES加解密单元测试3. RSA加解密单元测试4. SHA256哈希单元测试测试用例说明 总结 在现代软件开发中…...
sql server 对 nvarchar 类型的列进行 SUM() 运算
因为 SUM() 是一个数值聚合函数,不能直接应用于字符串类型的数据。为了正确汇总标准数量,你需要确保该列的数据类型是数值类型,如 int、decimal 或 float。 假设要统计数量列的和,由于数量列是 nvarchar 类型,你需要先…...
java中json字符串键值获取
<dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>1.2.83</version> </dependency>使用fastjson依赖 JSONObject jsonObject JSON.parseObject(s); 这个jsonObject本质就是一个map&…...

MPLS原理及配置
赶时间可以只看实验部分 由来:90年代中期,互联网流量的快速增长。传统IP报文依赖路由器查询路由表转发,但由于硬件技术存在限制导致转发性能低,查表转发成为了网络数据转发的瓶颈。 因此,旨在提高路由器转发速度的MPL…...

口碑很好的国产LDO芯片,有哪些?
在几乎任何一个电路设计中,都可能会使用LDO(低压差线性稳压器)这个器件。 虽然LDO不是什么高性能的IC,但LDO芯片市场竞争异常激烈。最近几年,诞生了越来越多的精品国产LDO,让人看得眼花缭乱。 业内人士曾经…...

【流程设计】类似钉钉的流程设计功能样式demo
对于一些审批流程,可能会用到这个功能,通过这样一层层的加下来,弄一个审批流程的数组,然后根据这个来审核是否都通过审批,这里是简单的弄一个样式的demo,功能自由发挥 <!DOCTYPE html> <html>…...

ChatGPT入门之文本情绪识别:先了解LSTM如何处理文字序列
文章目录 0. 首先聊聊什么是RNN1. 理解LSTM,从数据如何喂给 LSTM开始2. LSTM每个门是如何处理序列数据的?2.1 遗忘门(Forget Gate):该忘掉哪些信息?2.2 输入门(Input Gate)ÿ…...
测试开发之面试宝典
目录 session和cookie的区别 session和cookie的区别 1.session和cookie都是鍵值对应的 2.session和cookie都是服务器生成的,session的ID,即服各器用来识别读取session对象的一把钥匙 3.session是保存在服各器端,而cookie是返回給客戶端的&…...
399. 除法求值【 力扣(LeetCode) 】
文章目录 零、LeetCode 原题一、题目描述二、测试用例三、解题思路3.1 图的路径搜索3.2 路径压缩 四、参考代码4.1 图的路径搜索4.2 路径压缩 零、LeetCode 原题 399. 除法求值 一、题目描述 给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,…...

算法日记1:洛谷p2678跳石头(二分答案)
1、题目 二、题解: 2.1解题思路: 1.题目要求求出最小值最大,明显的二分答案题目,所以我们可以二分可以跳跃距离int l-1,rL1; 2.此时我们思考lmid和rmid的处理,当我们的check(mid)为true时候 表明我们此时的mid是符合要求的, 那么…...

Unity shader中真的可以动态关闭Stencil Test吗?
这个问题很多年前就有人问了: https://discussions.unity.com/t/how-to-disable-the-stencil-block-via-shader-properties/600273/1 最后的答案是: set [_StencilComp] to CompareFunction.Disabled to disable the Stencil Op completely. 但是我测试…...

YOLOv9改进,YOLOv9自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,适合目标检测、分割任务
摘要 论文提出了一种新的搜索框架,名为 HyCTAS,用于在给定任务中自动搜索高效的神经网络架构。HyCTAS框架结合了高分辨率表示和自注意力机制,通过多目标优化搜索,找到了一种在性能和计算效率之间的平衡。 # 理论介绍 自注意力(Self-Attention)机制是HyCTAS框架中的一个…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

基于 TAPD 进行项目管理
起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...