当前位置: 首页 > news >正文

Elasticsearch ES|QL 地理空间索引加入纽约犯罪地图

可以根据地理空间数据连接两个索引。在本教程中,我将向你展示如何通过混合邻里多边形和 GPS 犯罪事件坐标来创建纽约市的犯罪地图。

安装

如果你还没有安装好自己的 Elasticsearch 及 Kibana 的话,请参考如下的链接来进行安装。

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在第一次启动 Elasticsearch 时,我们需要记下超级用户 elastic 的密码:

这个密码将在下面进行使用。

装载测试数据

定义映射

我们在 Kibana 中打入如下的命令来定义索引 nyc_neighborhood 及 crime_events

PUT nyc_neighborhood
{"mappings": {"properties": {"neighborhood": {"type": "keyword"},"borough": {"type": "keyword"},"location": {"type": "geo_shape"}}}
}

我们也可以在命令行中使用如下的命令来进行操作:

curl -k -XPUT -u elastic:<YourPassword> "https://localhost:9200/nyc_neighborhood" -H "Content-Type: application/json" -d'
{"mappings": {"properties": {"neighborhood": {"type": "keyword"},"borough": {"type": "keyword"},"location": {"type": "geo_shape"}}}
}'
PUT crime_events
{"mappings": {"properties": {"crime_type": {"type": "keyword"},"crime_timestamp": {"type": "date"},"crime_location": {"type": "geo_point"}}}
}

我们也可以在命令行中使用如下的命令来进行操作:

curl -k -u elastic:<YourPassword> -XPUT "https://localhost:9200/crime_events" -H "Content-Type: application/json" -d'
{"mappings": {"properties": {"crime_type": { "type": "keyword" },"crime_timestamp": { "type": "date" },"crime_location": { "type": "geo_point" }}}
}'

如果你想删除上面的两个索引,你可以在命令行中进行如下的操作:

curl -k -u elastic:<YourPassword> -XDELETE "https://localhost:9200/nyc_neighborhood"curl -k -u elastic:<YourPassword> -XDELETE "https://localhost:9200/crime_events"

注意:请注意 geo_shape 和 geo_point 字段类型用于位置。因为邻里是区域,所以应该通过多边形表示,而犯罪事件是地点,因此是单个点。

我们可以注意到上面的两个索引有两个位置字段:crime_location 是 geo_point 数据类型,而另外一个 location 是 geo_shape 类型。

如上所示,如果一个 geo_point 被一个 geo shape 所包含,那么这两个数据就是关联的。我们可以正对它们进行数据的丰富。我们可以从另外一个索引中得到额外的字段,比如,neighborhood。这样我们可以针对整个 neighborhood 进行数据的统计和可视化。

批量加载 - bulk load

我为邻域准备了详细数据,其中包含约 600 行,因此我不会在这里列出,而是请使用 bulk API 将其加载到 ELK。

从 IPFS 进行下载

我们使用如下的命令来进行下载:

docker run --rm -it \
-v "$PWD:/tmp" \
-e IPFS_GATEWAY="https://ipfs.filebase.io/" \
curlimages/curl:8.5.0 --parallel --output "/tmp/#1.json" "ipfs://{QmaZD1xzi1MFf2MhjrZv7U2BGKji9U1jRB9im1MbbPG446,QmNNaC9AquYsQfRu5nqZgWcCjFKEAqv2XS1XgHw3Tut8ck}"
$ docker run --rm -it \
> -v "$PWD:/tmp" \
> -e IPFS_GATEWAY="https://ipfs.filebase.io/" \
> curlimages/curl:8.5.0 --parallel --output "/tmp/#1.json" "ipfs://{QmaZD1xzi1MFf2MhjrZv7U2BGKji9U1jRB9im1MbbPG446,QmNNaC9AquYsQfRu5nqZgWcCjFKEAqv2XS1XgHw3Tut8ck}"
Unable to find image 'curlimages/curl:8.5.0' locally
8.5.0: Pulling from curlimages/curl
c30352492317: Pull complete 
90f58e8ca393: Pull complete 
4ca545ee6d5d: Pull complete 
Digest: sha256:08e466006f0860e54fc299378de998935333e0e130a15f6f98482e9f8dab3058
Status: Downloaded newer image for curlimages/curl:8.5.0
DL% UL%  Dled  Uled  Xfers  Live Total     Current  Left    Speed
100 --   507k     0     2     0   0:00:02  0:00:02 --:--:--  226k      
$ ls
QmNNaC9AquYsQfRu5nqZgWcCjFKEAqv2XS1XgHw3Tut8ck.json QmaZD1xzi1MFf2MhjrZv7U2BGKji9U1jRB9im1MbbPG446.json

我们使用如下的命令来进行重新命名:

mv QmaZD1xzi1MFf2MhjrZv7U2BGKji9U1jRB9im1MbbPG446.json nyc_neighborhood_bulk.jsonmv QmNNaC9AquYsQfRu5nqZgWcCjFKEAqv2XS1XgHw3Tut8ck.json crime_events.json
$ ls
crime_events.json          nyc_neighborhood_bulk.json

crime_events.json 文件展示:

"index": {}}
{"crime_type": "theft", "timestamp": "2024-07-24T10:00:00Z", "crime_location": {"type": "point", "coordinates": [-74.0060, 40.7128]}}
{"index": {}}
{"crime_type": "assault", "timestamp": "2024-07-24T12:30:00Z", "crime_location": {"type": "point", "coordinates": [-73.9890, 40.6892]}}
{"index": {}}
{"crime_type": "vandalism", "timestamp": "2024-07-24T15:45:00Z", "crime_location": {"type": "point", "coordinates": [-73.9106, 40.7769]}}
{"index": {}}
{"crime_type": "robbery", "timestamp": "2024-07-25T09:15:00Z", "crime_location": {"type": "point", "coordinates": [-73.9865, 40.7306]}}

nyc_neighborhood_bulk 文件展示:

{"index": {}}
{"neighborhood": "Allerton", "borough": "Bronx", "location": {"type": "Polygon", "coordinates": [[[-73.86888180915341, 40.857223150158326], [-73.86831755272824, 40.85786206225831], [-73.86955371467232, 40.85778409560018], [-73.87102485762065, 40.857309948816905], [-73.87048054998716, 40.865413584098484], [-73.87055489856489, 40.86970279858986], [-73.86721594442561, 40.86968966363671], [-73.85745, 40.86953300000018], [-73.85555000000011, 40.871813000000145], [-73.85359796757658, 40.8732883686742], [-73.84859700000018, 40.871670000000115], [-73.84582253683678, 40.870239076236174], [-73.85455918463374, 40.85995383576425], [-73.85466543306826, 40.859585694988056], [-73.85638870335896, 40.85759363530448], [-73.86888180915341, 40.857223150158326]]]}}
{"index": {}}

上传文件至 Elasticsearch

curl -XPOST -u elastic:<YourPassword> "https://localhost:9200/nyc_neighborhood/_bulk" -H "Content-Type: application/json" -k --data-binary "@nyc_neighborhood_bulk.json" > /dev/nullcurl -XPOST -u elastic:<YourPassword> "https://localhost:9200/crime_events/_bulk" -H "Content-Type: application/json" -k --data-binary "@crime_events.json" > /dev/null
curl -XPOST -u elastic:LX+LGtCWdSa9zn1d2Ebs "https://localhost:9200/nyc_neighborhood/_bulk" -H "Content-Type: application/json" -k --data-binary "@nyc_neighborhood_bulk.json" > /dev/null% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  561k    0 58846  100  504k   251k  2211k --:--:-- --:--:-- --:--:-- 2463k

我们可以到 Kibana 中进行查看:

我们看到有32个文档已经写入到 Elasticsearch 中。

curl -XPOST -u elastic:LX+LGtCWdSa9zn1d2Ebs "https://localhost:9200/crime_events/_bulk" -H "Content-Type: application/json" -k --data-binary "@crime_events.json" > /dev/null% Total    % Received % Xferd  Average Speed   Time    Time     Time  CurrentDload  Upload   Total   Spent    Left  Speed
100  6809    0  3805  100  3004  27552  21752 --:--:-- --:--:-- --:--:-- 49340

我们到 Kibana 中进行查看:

我们可以看到有 20 个文档写入到 Elasticsearch 中。

我们也可以在 Kibana 中使用 ES|QL 来展示数据:

POST /_query?format=csv
{"query": """from nyc_neighborhood"""
}

加入地理空间数据集

丰富策略

在 Elasticsearch 世界中,它被称为丰富。你将创建丰富策略,该策略将定义包含键值对的查找表

PUT /_enrich/policy/what-is-area-name
{"geo_match": {"indices": "nyc_neighborhood","match_field": "location","enrich_fields": ["neighborhood" , "borough"]}
}

上面的意思表明,如果 location 字段包含另外一个索引中的 geo_point 点,那么 neighborhood 及 borough 将会被丰富。

它将从 nyc_neighborhood 索引中获取字段。match field 是关键,而 enrich_fields 将是附加到索引的值,你将来会通过 enrich 处理器或 ES|QL 命令来丰富这些值。

创建策略后,你必须执行它:

POST _enrich/policy/what-is-area-name/_execute

这是使用选定数据创建新的系统索引。你可以使用 ES|QL 显示其中的内容。

POST _query?format=csv
{"query":"""from .enrich-what-is-area-name*| limit 1000"""
}

这是你的查找表。从现在起,你可以使用它执行连接。

使用 ES|QL 连接数据

以下查询将汇总每个地区的犯罪事件。

POST /_query?format=txt
{"query": """from crime_events| keep crime_type,timestamp,crime_location| enrich what-is-area-name on crime_location| where borough is not null| limit 10"""
}

POST /_query?format=txt
{"query": """from crime_events| keep crime_type,timestamp,crime_location| enrich what-is-area-name on crime_location| where borough is not null| stats howMany = count(*) by borough,crime_type| limit 10"""
}

上面真的每个 borough 地区进行了统计。

Kibana 中的可视化

请使用 Maps 创建图层并制作漂亮的仪表板。添加图层时,你可以使用 ES|QL 获取正确的数据。首先来创建 Data views:

我们下面来做可视化:

在上面,我们使用如下的查询:

from crime_events | keep crime_location | limit 10000

我们放大地图就可以看到显示的数据。

按照同样的方法,我们添加另外一个 layer,使用如下的查询:

from nyc_neighborhood | keep location | limit 10000

我们需要调整上下层(通过拖拽调整层的关系)。最终我们得到上面的可视化图。

相关文章:

Elasticsearch ES|QL 地理空间索引加入纽约犯罪地图

可以根据地理空间数据连接两个索引。在本教程中&#xff0c;我将向你展示如何通过混合邻里多边形和 GPS 犯罪事件坐标来创建纽约市的犯罪地图。 安装 如果你还没有安装好自己的 Elasticsearch 及 Kibana 的话&#xff0c;请参考如下的链接来进行安装。 如何在 Linux&#xff0…...

csp-j知识点:联合(Union)的基本概念

一、联合&#xff08;Union&#xff09;的基本概念 联合是C/C语言中一种特殊的数据结构&#xff0c;它的主要特点是所有成员共享同一块内存空间。这意味着在任何给定时刻&#xff0c;联合中只有一个成员是有效的&#xff0c;因为它们都占用相同的物理内存位置。联合的大小取决…...

docker-compose 方式安装部署confluence

一、confluence简介 Confluence是一款由澳大利亚软件公司Atlassian开发的企业协作工具。它是一个基于web的团队协作平台&#xff0c;用于帮助团队成员共享和协同工作的知识、文档、想法和项目。 Confluence提供了一个集中管理和共享文档、知识库和项目信息的平台。团队成员可…...

深入理解计算机系统阅读笔记-第十二章

第12章 网络编程 12.1 客户端-服务器编程模型 每个网络应用都是基于客户端-服务器模型的。根据这个模型&#xff0c;一个应用时由一个服务器进程和一个或者多个客户端进程组成。服务器管理某种资源&#xff0c;并且通过操作这种资源来为它的客户端提供某种服务。例如&#xf…...

网络原理(九):数据链路层 - 以太网协议 应用层 - DNS 协议

目录 1. 数据链路层 1.1 以太网协议 1.1.1 以太网帧格式 1.2 mac 地址 1.2.1 IP 地址和 mac 地址的区别 1.3 帧中的类型字段 1.3.1 MTU - 最长载荷长度 1.3.2 ARP 协议 2. DNS 协议 1. 数据链路层 数据链路层, 是一个底层的层次, 主要用于交换机开发, 对于 Java 开发…...

rtthread学习笔记系列(4/5/6/7/15/16)

文章目录 4. 杂项4.1 检查是否否是2的幂 5. 预编译命令void类型和rt_noreturn类型的区别 6.map文件分析7.汇编.s文件7.1 汇编指令7.1.1 BX7.1.2 LR链接寄存器7.1.4 []的作用7.1.4 简单的指令 7.2 MSR7.3 PRIMASK寄存器7.4.中断启用禁用7.3 HardFault_Handler 15 ARM指针寄存器1…...

【拒绝算法PUA】3065. 超过阈值的最少操作数 I

系列文章目录 【拒绝算法PUA】0x00-位运算 【拒绝算法PUA】0x01- 区间比较技巧 【拒绝算法PUA】0x02- 区间合并技巧 【拒绝算法PUA】0x03 - LeetCode 排序类型刷题 【拒绝算法PUA】LeetCode每日一题系列刷题汇总-2025年持续刷新中 C刷题技巧总结&#xff1a; [温习C/C]0x04 刷…...

今日总结 2025-01-14

学习目标 掌握运用 VSCode 开发 uni - app 的配置流程。学会将配置完善的项目作为模板上传至 Git&#xff0c;实现复用。项目启动 创建项目&#xff1a;借助 Vue - Cli 方式创建项目&#xff0c;推荐从国内地址 https://gitee.com/dcloud/uni - preset - vue/repository/archiv…...

关于扫描模型 拓扑 和 传递贴图工作流笔记

关于MAYA拓扑和传递贴图的操作笔记 一、拓扑低模: 1、拓扑工作区位置: 1、准备出 目标 高模。 (高模的状态如上 ↑ )。 2、打开顶点吸附,和建模工具区,选择四边形绘制. 2、拓扑快捷键使…...

C#知识|泛型Generic概念与方法

哈喽&#xff0c;你好啊&#xff0c;我是雷工&#xff01; 关于泛型在前面学习记录过 《泛型集合List相关方法》、《Dictionary泛型集合的使用总结》&#xff1b; 其中泛型集合 List<T>、Dictionary<k,v>所在的命名空间为&#xff1a;System.Collection.Generic…...

centos 8 中安装Docker

注&#xff1a;本次样式安装使用的是centos8 操作系统。 1、镜像下载 具体的镜像下载地址各位可以去官网下载&#xff0c;选择适合你们的下载即可&#xff01; 1、CentOS官方下载地址&#xff1a;https://vault.centos.org/ 2、阿里云开源镜像站下载&#xff1a;centos安装包…...

vscode vue 自动格式化

vscode vue 自动格式化 安装Prettier和Vetur插件 选择设置&#xff0c;并且转到编辑文件。增加如下内容。 {"editor.formatOnSave": true,"editor.defaultFormatter": "esbenp.prettier-vscode","[vue]": {"editor.defaultFor…...

Webpack 5 混淆插件terser-webpack-plugin生命周期作用时机和使用注意事项

参考案例代码 海南酷森科技有限公司/webpack-simple-demo Terser&#xff08;简要的/简短的&#xff09; 混淆依据 混淆是发生在代码已经 bundle 之后的事情 变量或者函数在被引用或赋值时才能被混淆 孤立的函数或者变量可能会被移除&#xff0c;但不会被混淆&#xff0c;要…...

MQTT(Message Queuing Telemetry Transport)协议

文章目录 一、MQTT 的原理1. 通信模型2. 核心概念3. 工作流程 二、MQTT 的优势1. 轻量级2. 异步通信3. 可靠性4. 实时性5. 支持断线重连6. 跨平台支持7. 安全性 三、MQTT 的典型应用场景四、与其他协议的对比 MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;…...

【MySQL学习笔记】MySQL存储过程

存储过程 1、基础语法2、变量2.1 系统变量2.2 用户自定义变量2.3 局部变量 3、if 流程控制4、参数5、case 流程控制6、循环结构6.1 while 循环6.2 repeat 循环6.3 loop 循环 7、游标 存储过程是事先经过编译并存储在数据库中的一段 SQL 语句的集合&#xff0c;调用存储过程可以…...

Vue2+OpenLayers实现折线绘制、起始点标记和轨迹打点的完整功能(提供Gitee源码)

目录 一、案例截图 二、安装OpenLayers库 三、代码实现 3.1、HTML页面 3.2、初始化变量 3.3、创建起始点位 3.4、遍历轨迹点 3.5、画折线 3.6、初始化弹窗信息 3.7、初始化地图上标点的点击事件 3.8、完整代码 四、Gitee源码 一、案例截图 二、安装OpenLayers库 n…...

基于Spring Boot的城市垃圾分类管理系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

linux: 文本编辑器vim

文本编辑器 vi的工作模式 (vim和vi一致) 进入vim的方法 方法一:输入 vim 文件名 此时左下角有 "文件名" 文件行数,字符数量 方法一: 输入 vim 新文件名 此时新建了一个文件并进入vim,左下角有 "文件名"[New File] 灰色的长方形就是光标,输入文字,左下…...

Eclipse Debug 调试

关于Eclipse的Debug调试功能&#xff0c;有几点重要的信息可以分享。 Debug的启动方式&#xff1a;Eclipse提供了多种启动程序调试的方式&#xff0c;包括通过菜单(Run –> Debug)、点击“绿色臭虫”图标、右键选择Debug As以及使用快捷键(F11)【0†source】。 调试中最常用…...

vue3+ts的<img :src=““ >写法

vue3ts的<img :src"" >写法<img :src"datasetImage" alt"数据分布示意图" /><script setup lang"ts">const datasetImage ref();datasetImage.value new URL(../../../assets/images/login-background.jpg, impo…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...