理解STC15F2K60S2单片机的最小电路
一、STC15F2K60S2与51单片机的区别
STC15F2K60S2和51单片机虽然都基于8051内核,但在多个方面存在显著区别:
1. CPU性能:
- STC15F2K60S2:采用增强型8051 CPU,1T单时钟/机器周期,速度比普通8051快8-12倍。
- 51单片机:标准的8051 CPU,速度较慢,通常需要多个机器周期来执行一条指令。
2. 工作电压:
- STC15F2K60S2:工作电压为5.5V - 4.5V(5V单片机)。
- 51单片机:工作电压通常为5V,但也有低电压版本如3.3V。
3. 存储器:
- STC15F2K60S2:具有8K/16K/24K/32K/40K/48K/56K/60K/61K/63.5K字节的Flash程序存储器,可擦写次数10万次以上;2048字节的SRAM,包括256字节的常规RAM和1792字节的扩展XRAM;大容量EEPROM,擦写次数10万次以上。
- 51单片机:通常具有4KB的内部存储器,可扩展到64KB;内置RAM用于存储临时数据和变量。
4. 外设:
- STC15F2K60S2:集成8通道10位高速ADC,速度可达30万次/秒;3路PWM还可当3路D/A使用;支持ISP/IAP,在系统可编程/在应用可编程,无需编程器和仿真器。
- 51单片机:通常不集成ADC和DAC,需要外接模块;编程和调试需要专用的编程器和仿真器。
5. 复位电路:
- STC15F2K60S2:复位电路通常由上拉电阻和手动复位按钮构成,还可能包括启动时自动复位电路。
- 51单片机:复位电路由电容和电阻构成,当系统上电时,RST脚会出现高电平,持续时间由RC值决定。
6.晶振:
需要注意的是51单片机使用的是外置晶振,频率通常为11.0592MHZ或则12MHZ;但是在STC15F2K60S2单片机中使用的是内置的35MHZ晶振,其工作频率是前者约3.16倍,因此在做代码迁移的时候需要考虑该方面的问题,如定时器寄存器、延时等数值的计算。
二、从51单片机的最小电路理解STC15F2K60S2最小电路
51单片机的最小电路包括电源、复位电路、时钟电路和必要的输入输出接口。理解这些基本组成部分有助于我们构建STC15F2K60S2的最小电路。
图1 51单片机的最小电路示意图
图2 STC15F2K60S2引脚图
从图上可以看出,因为STC15F2K60S2本身自带晶振,实际上只要有电源电路就可以工作(复位电路可以参考51单片机的电路),参考如下:
三、如何下载程序到STC15F2K60S2
下载程序到STC15F2K60S2单片机通常使用STC-ISP方式,具体步骤如下:
1. 安装开发环境:
- 下载并安装STC-ISP、Keil uVision集成开发环境(IDE)和串口下载驱动程序。
2. 配置开发环境:
- 打开Keil uVision IDE,新建项目,选择对应的STC15F2K60S2型号,并配置好连接器和烧录设置。
3. 连接硬件:
- 将STC15F2K60S2通过串口下载连接到电脑,TXD连接P3.0引脚,RXD连接P3.1引脚,并确保烧录器已正确识别设备。
4. 编程和烧录:
- 编写完C代码后,添加头文件.
(1)打开STC-ISP软件,在单片机型号中选择好对应的芯片型号。
(2)在STC-ISP软件的keil仿真设置中点击“添加型号和头文件到keil中”,然后在弹出的对话框中选择keil的安装路径即可。
-编译创建HEX文件。使用STC-ISP进行下载。
四、总结
通过对比STC15F2K60S2和51单片机的特性,我们可以更好地理解STC15F2K60S2的最小电路设计。STC15F2K60S2在性能、存储器容量和外设集成方面都有显著提升,同时支持ISP/IAP,使得程序下载和更新更加方便。通过参考51单片机的最小电路设计,我们可以快速构建STC15F2K60S2的最小系统,并通过ISP方式下载程序,实现各种嵌入式应用。
相关文章:

理解STC15F2K60S2单片机的最小电路
一、STC15F2K60S2与51单片机的区别 STC15F2K60S2和51单片机虽然都基于8051内核,但在多个方面存在显著区别: 1. CPU性能: - STC15F2K60S2:采用增强型8051 CPU,1T单时钟/机器周期,速度比普通8051快8-12倍…...

Docker官网安装
1.官网 官方文档 https://www.docker.com/ Docker Hub官网 镜像 https://hub.docker.com/ 2.Docker 的三要素 1、镜像 2、容器 3、仓库 小总结 3.Docker 平台架构图 (架构版本) 4.安装Docker CentOS | Docker Docs 1.确定你是CentOS7及以上版本 …...

成功案例分享 — 芯科科技助力涂鸦智能打造Matter over Thread模块,简化Matter设备开发
芯科科技(Silicon Labs)的愿景之一是让开发者每天都能够更轻松地开发无线物联网(IoT)。特别是在拥有相同愿景的合作伙伴的帮助下,我们每天都在取得进步。但是要想弥合知识水平和物联网开发之间的差距仍会面临一定的挑战…...

基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用-以ENSO预测为例讲解
1. 背景与目标 ENSO(El Nio-Southern Oscillation)是全球气候系统中最显著的年际变率现象之一,对全球气候、农业、渔业等有着深远的影响。准确预测ENSO事件的发生和发展对于减灾防灾具有重要意义。近年来,深度学习技术在气象领域…...

【Rust自学】12.6. 使用TDD(测试驱动开发)开发库功能
12.6.0. 写在正文之前 第12章要做一个实例的项目——一个命令行程序。这个程序是一个grep(Global Regular Expression Print),是一个全局正则搜索和输出的工具。它的功能是在指定的文件中搜索出指定的文字。 这个项目分为这么几步: 接收命令行参数读取…...

贪心算法汇总
1.贪心算法 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 如何能看出局部最优是否能推出整体最优 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。 如何验证可不可以…...

H266/VVC 帧内预测中 ISP 技术
帧内子划分 ISP ISP 技术是在 JVET-2002-v3 提案中详细介绍其原理,在 VTM8 中完整展示算法。ISP是线基内预测(LIP)模式的更新版本,它改善了原始方法在编码增益和复杂度之间的权衡,ISP 算法的核心原理就是利用较近的像…...
PyTorch 中的 Dropout 解析
文章目录 一、Dropout 的核心作用数值示例:置零与缩放**训练阶段****推理阶段** 二、Dropout 的最佳使用位置与具体实例解析1. 放在全连接层后2. 卷积层后的使用考量3. BatchNorm 层与 Dropout 的关系4. Transformer 中的 Dropout 应用 三、如何确定 Dropout 的位置…...
集中式架构vs分布式架构
一、集中式架构 如何准确理解集中式架构 1. 集中式架构的定义 集中式架构是一种将系统的所有计算、存储、数据处理和控制逻辑集中在一个或少数几个节点上运行的架构模式。这些中央节点(服务器或主机)作为系统的核心,负责处理所有用户请求和…...

微服务主流框架和基础设施介绍
概述 微服务架构的落地需要解决服务治理问题,而服务治理依赖良好的底层方案。当前,微服务的底层方案总的来说可以分为两 种:微服务SDK (微服务框架)和服务网格。 微服务框架运行原理: 应用程序通过接入 SD…...

4.5.1 顺序查找、折半查找(二分查找)
文章目录 基本概念顺序查找折半查找(二分查找)索引顺序查找 基本概念 查找表:由同类元素构成的集合。 查找表按照是否可以修改数据表,可分为静态查找表、动态查找表。 静态查找表:不能修改数据表,可进行查询…...

DDD - 微服务设计与领域驱动设计实战(上)_统一建模语言及事件风暴会议
文章目录 Pre概述业务流程需求分析的困境统一语言建模事件风暴会议什么是事件风暴(Event Storming)事件风暴会议 总结 Pre DDD - 软件退化原因及案例分析 DDD - 如何运用 DDD 进行软件设计 DDD - 如何运用 DDD 进行数据库设计 DDD - 服务、实体与值对…...

基于Piquasso的光量子计算机的模拟与编程
一、引言 在科技飞速发展的当下,量子计算作为前沿领域,正以前所未有的态势蓬勃崛起。它凭借独特的量子力学原理,为解决诸多经典计算难以攻克的复杂问题提供了全新路径。从优化物流配送网络,以实现资源高效调配,到药物分子结构的精准模拟,加速新药研发进程;从金融风险的…...
44_Lua迭代器
在Lua中,迭代器是一种用于遍历集合元素的重要工具。掌握迭代器的使用方法,对于提高Lua编程的效率和代码的可读性具有重要意义。 1.迭代器概述 1.1 迭代器介绍 迭代器是一种设计模式,它提供了一种访问集合元素的方法,而不需要暴露其底层结构。在Lua中,迭代器通常以一个函…...

相机SD卡照片数据不小心全部删除了怎么办?有什么方法恢复吗?
前几天,小编在后台友收到网友反馈说他在整理相机里的SD卡,原本是想把那些记录着美好瞬间的照片导出来慢慢欣赏。结果手一抖,不小心点了“删除所有照片”,等他反应过来,屏幕上已经显示“删除成功”。那一刻,…...
RAG 测评基线
RAG (Retrieval-Augmented Generation) 概述 RAG 是一种大模型的技术,旨在通过将信息检索与生成模型(如 GPT)结合,增强模型的生成能力。传统的生成模型通常依赖于内部的训练数据来生成答案,但这种方式往往存在回答准确…...
麒麟系统设置tomcat开机自启动
本文针对的麒麟操作系统使用的是SystemD,那么配置Tomcat开机自启动的最佳方式是创建一个SystemD服务单元文件。以下是具体步骤: 确保Tomcat已正确安装: 确认Tomcat已经正确安装,并且可以手动启动和停止。 创建SystemD服务文件&am…...
java 学习笔记 第二阶段:Java进阶
目录 多线程编程 线程的概念与生命周期 创建线程的两种方式(继承Thread类、实现Runnable接口) 线程同步与锁机制(synchronized、Lock) 线程池(ExecutorService) 线程间通信(wait、notify、notifyAll) 实践建议:编写多线程程序,模拟生产者-消费者问题。 反射机…...

机组存储系统
局部性 理论 程序执行,会不均匀访问主存,有些被频繁访问,有些很少被访问 时间局部性 被用到指令,不久可能又被用到 产生原因是大量循环操作 空间局部性 某个数据和指令被使用,附近数据也可能使用 主要原因是顺序存…...
【基础工程搭建】内存访问异常问题分析
前言 汽车电子嵌入式开始更新全新的AUTOSAR项目实战专栏内容,从0到1搭建一个AUTOSAR工程,内容会覆盖AUTOSAR通信协议栈、存储协议栈、诊断协议栈、MCAL、系统服务、标定、Bootloader、复杂驱动、功能安全等所有常见功能和模块,全网同步更新开发设计文档(后期也会更新视频内…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...