OpenAI Whisper:语音识别技术的革新者—深入架构与参数
当下语音识别技术正以前所未有的速度发展,极大地推动了人机交互的便利性和效率。OpenAI的Whisper系统无疑是这一领域的佼佼者,它凭借其卓越的性能、广泛的适用性和创新的技术架构,正在重新定义语音转文本技术的规则。今天我们一起了解一下Whisper的架构、核心能力以及其丰富的参数设置,帮助读者更好地理解这一前沿技术。
Whisper的基石:强大的架构与训练
Whisper的核心是一个基于Transformer的序列到序列模型,这一模型经过680,000小时的标记音频数据训练,堪称有史以来创建的最大的监督语音识别数据集之一。如此庞大的数据集为Whisper提供了无与伦比的优势,使其能够识别各种口音、处理背景噪音,并适应不同的音频质量。
Whisper的架构设计使其能够同时处理多项任务,包括多语种语音识别、语音翻译、口语识别和语音活动检测。这种统一的处理方式不仅提高了效率,还确保了任务之间的无缝衔接。通过采用智能的令牌(token)系统,Whisper能够在转录和翻译过程中管理各种任务。从<|startoftranscript|>令牌开始,它预测语言(支持99种语言),对于非语音部分使用<|nospeech|>令牌,通过<|transcribe|>或<|translate|>指定任务类型,并使用<|notimestamps|>令牌控制时间戳,每个预测都以<|endoftranscript|>令牌结束,从而确保了音频任务的清晰处理。
Whisper的关键参数:精细调整以实现最佳效果
对于使用Whisper的实践者来说,理解如何调整其参数以实现可靠的转录至关重要。以下是关键参数的详细解释:
核心参数与模型选择
- 输入与模型选择
Whisper接受一个或多个音频文件路径进行转录,这是必需的参数,并且支持使用“+”操作符进行多文件处理。模型参数指定要使用的Whisper模型变体,默认是“turbo”。不同的模型在准确性和速度之间提供了不同的权衡,选项包括“tiny”、“base”、“small”、“medium”和“large”。
- 设备
此参数确定PyTorch推理的处理设备。如果可用,它会自动选择CUDA,否则默认为CPU。选项为“cuda”(用于GPU处理)和“cpu”(用于CPU处理)。
任务与语言设置
- 任务
定义要在音频输入上执行的主要操作。使用“transcribe”进行X->X语音识别(即将音频中的口语转录为相同语言)。或者,选择“translate”进行X->英语翻译(即将源语言的音频直接转换为英文文本)。默认设置是“transcribe”,适用于同语言转录任务。
- 语言
指定音频中的口语语言,可以使用标准语言代码(例如,“en”表示英语)或完整的语言名称(例如,“English”)。将此设置为None将启用模型的自动语言检测。准确指定语言可以提高转录和翻译质量,因为这会使模型的处理与音频的语言上下文保持一致。默认值为None。
解码参数:温度与采样
- 温度
通过调整采样温度来控制模型输出的随机性。默认值为0,使输出具有确定性,产生一致的结果。较高的值(从0到1)引入更多的变化和创造性,这有助于解释不清晰的语音或为模糊音频输入生成多个假设。
- best_of
当以非零温度采样时,此参数指定Whisper模型生成的候选序列数量。默认值为5,意味着模型将生成五个潜在输出,然后选择最佳的一个。增加此值允许模型考虑更多的可能性,从而提高准确性,尤其是在不清晰或有噪音的音频中。然而,更多的候选序列需要更多的处理时间和资源,因为模型需要评估更大的可能输出集。
Beam Search配置
- beam_size
指定Whisper模型内使用的beam search算法中的beam数量。默认值为5,意味着模型在解码过程的每个步骤中考虑五个潜在假设。Beam search是一种解码策略,它同时探索多个候选序列,并选择累积概率最高的一个。较大的beam值通过允许模型探索更多可能的序列来提高输出的准确性,降低了次优结果的可能性。然而,这以处理速度为代价,因为模型在每个步骤中评估更多的候选者。此参数仅在温度设置为零时相关,因为beam search通常用于确定性解码。
长度惩罚
- length_penalty
令牌长度惩罚系数(alpha)调整序列长度对模型评分的影响。没有它,模型倾向于偏爱较短的序列,因为它们有较少的令牌并导致更高的平均概率。添加长度惩罚确保了较长的序列不会被不公平地惩罚,从而在不同序列长度之间促进了更平衡和连贯的输出。Alpha=1按比例对beam评分进行惩罚,以考虑序列长度,而alpha=0则不应用惩罚,对所有序列长度一视同仁。值<1鼓励更长的序列,而值>1则偏爱较短的序列。
高级处理选项:令牌和提示符管理
- suppress_tokens
在采样期间抑制的令牌ID的逗号分隔列表。默认“-1”抑制大多数特殊字符,除了常见标点符号。这对于清理输出很有用。
- initial_prompt
为第一个窗口提供的文本提示。有助于引导模型的初始输出。特别适用于领域特定的术语。
- carry_initial_prompt
控制跨窗口的提示符行为。默认值为False。当为True时,它将initial_prompt附加到每个decode()调用中。在每个解码步骤中包含相同的起始提示符可能会阻止模型根据对话中的先前输入进行调整。这会降低其基于先前输入在对话中演变和适应的能力。
处理与性能
- condition_on_previous_text
通过确保模型为每个新输入使用相同的上下文来维持跨处理窗口的一致性。默认值为True,这有助于保持文本的连贯流动。禁用它(设置为False)会降低模型陷入重复循环的风险,但可能会使文本在不同窗口之间的一致性降低。此设置可以影响跨窗口交互的整体连贯性,取决于模型如何处理上下文。
- fp16
启用半精度浮点推理,这减少了内存使用并可能潜在地提高处理速度。默认设置为True,优化了性能而不会显著影响模型的运行。虽然它可以帮助更有效地运行更大的模型,但与全精度推理相比,使用半精度可能会略微降低准确性。对于需要更快或更内存高效的处理的应用程序来说,这种权衡通常是值得的。
错误处理与质量控制
- temperature_increment_on_fallback
解码失败时的温度增加步长。默认值为0.2。此参数有助于模型从解码失败中恢复,通过逐渐增加温度来引入更多的输出随机性。这可以使模型生成更多样化的响应,并避免陷入重复的失败循环中。
- compression_ratio_threshold
解码失败的Gzip压缩比阈值,默认值为2.4,有助于识别输出中的潜在问题。如果压缩比超过此值,则解码被视为失败,表明结果不完整或不准确。较高的比率表明输出中存在重复的序列,这可能在模型陷入困境并重复生成相同短语时发生。此阈值可防止模型输出此类陷入困境的预测,从而确保更好地处理输出质量。
- logprob_threshold
解码的平均对数概率阈值,默认值为-1.0,设置模型转录的置信度水平。较低的值表示不太自信的转录,因为它们对应于较弱的预测。此阈值有助于过滤掉不确定的输出,确保仅接受更可靠的转录。
- no_speech_threshold
检测静音的阈值,默认值为0.6,确定模型何时识别音频中的静音期。它与logprob_threshold一起工作以改进检测准确性。较高的值使静音检测更加积极,允许模型更容易地标记和处理音频中的静音部分。此参数有助于改进音频的分割和整体处理。
Whisper的广泛应用与未来展望
Whisper的广泛应用场景涵盖了从日常会议记录到跨国交流的各个领域。其强大的多语言支持和在嘈杂环境中的稳定性,使得它成为许多企业和个人的首选工具。此外,Whisper的开源特性也促进了其在学术界和开源社区中的进一步研究和开发。
随着技术的不断进步,我们可以预见Whisper将在更多领域发挥重要作用。例如,在远程医疗中,医生可以利用Whisper进行准确的语音记录,从而提高诊断效率和准确性。在教育领域,教师可以利用这一技术来记录课堂内容,为学生提供更丰富的学习资源。此外,Whisper在智能家居、自动驾驶等领域的应用也将逐渐展开,为我们的生活带来更多便利。
OpenAI的Whisper不仅代表了语音识别技术的一次重大飞跃,更是对未来无限可能的窥探。其强大的架构和巧妙的参数调整策略,为我们提供了一个全新的视角来审视和理解语音识别技术。
code:https://github.com/openai/whisper
相关文章:

OpenAI Whisper:语音识别技术的革新者—深入架构与参数
当下语音识别技术正以前所未有的速度发展,极大地推动了人机交互的便利性和效率。OpenAI的Whisper系统无疑是这一领域的佼佼者,它凭借其卓越的性能、广泛的适用性和创新的技术架构,正在重新定义语音转文本技术的规则。今天我们一起了解一下Whi…...

基于当前最前沿的前端(Vue3 + Vite + Antdv)和后台(Spring boot)实现的低代码开发平台
项目是一个基于当前最前沿的前端技术栈(Vue3 Vite Ant Design Vue,简称Antdv)和后台技术栈(Spring Boot)实现的低代码开发平台。以下是对该项目的详细介绍: 一、项目概述 项目名称:lowcode-s…...

【Rust】错误处理机制
目录 思维导图 引言 一、错误处理的重要性 1.1 软件中的错误普遍存在 1.2 编译时错误处理要求 二、错误的分类 2.1 可恢复错误(Recoverable Errors) 2.2 不可恢复错误(Unrecoverable Errors) 三、Rust 的错误处理机制 3…...

Logback日志技术
Logback日志技术 日志 日志(Logging)是软件开发和运维中用于记录系统或应用程序运行期间发生的运行信息、状态变化、错误信息等的一种机制,这种记录的方式就好像我们日常生活中写日记一样。它提供了一种持久化的方式,使得开发者…...
9分布式微服务架构
分布式微服务架构不光需要从架构上的设计优化系统,还要在编码上优化达到最好的效果 中心化的设计 中心化的设计比较简单,分布式集群中的角色分为两种,管理者和被管理者。 在一个分布式或者集群中,管理者角色管理着其他处理实际…...

Leecode刷题C语言之统计重新排列后包含另一个字符串的子字符串数目②
执行结果:通过 执行用时和内存消耗如下: void update(int *diff, int c, int add, int *cnt) {diff[c] add;if (add 1 && diff[c] 0) {// 表明 diff[c] 由 -1 变为 0(*cnt)--;} else if (add -1 && diff[c] -1) {// 表明 diff[c] 由 0 变为 -…...
HTML和CSS相关的问题,为什么页面加载速度慢?
页面加载速度慢是网站优化中一个常见的问题,可能由于多种原因,包括HTML和CSS的代码编写方式、资源的加载顺序、页面渲染的复杂性等。以下是一些常见的原因和优化方法,结合实际项目代码示例进行讲解。 1. 过多的资源请求 如果页面包含大量的…...

LiveGBS流媒体平台GB/T28181常见问题-没有收到视频流播放时候提示none rtp data receive未收到摄像头推流如何处理?
LiveGBS没有收到视频流播放时候提示none rtp data receive未收到摄像头推流如何处理? 1、none rtp data receive2、搭建GB28181视频直播平台 1、none rtp data receive LiveSMS 收不到下级推流 首先需要排查服务器端 UDP & TCP 30000-30249 端口是否开放其次排…...
Flask表单处理与验证
Flask是一个轻量级的Python框架,它通过扩展库提供了对表单处理与验证的支持。WTForms是一个流行的Flask扩展库,用于创建和验证Web表单。它提供了一种声明式的方法来定义表单结构和验证逻辑,使得表单处理更为简洁和优雅。下面,我们…...

正泰电工携手图扑:变电站数字孪生巡检平台
随着电力行业的快速发展与智能化转型,传统的人工巡检方式难以匹配现代电网对于效率、安全和精细化管理的高标准要求。在此背景下,构建智慧变电站巡检系统已成为推动变电站智能化进程、实现高效运营和保障电网可靠性的重要战略。 图扑软件与正泰电工联合…...

瑞芯微 RK 系列 RK3588 使用 ffmpeg-rockchip 实现 MPP 视频硬件编解码-代码版
前言 在上一篇文章中,我们讲解了如何使用 ffmpeg-rockchip 通过命令来实现 MPP 视频硬件编解码和 RGA 硬件图形加速,在这篇文章,我将讲解如何使用 ffmpeg-rockchip 用户空间库(代码)实现 MPP 硬件编解码。 本文不仅适…...
uniapp 预加载分包,减少loading
在 uniapp 中,可以通过配置 pages.json 文件中的 preloadRule 属性来实现页面预加载功能。以下是具体操作步骤: 1. 在 pages.json 中配置 preloadRule preloadRule 用于指定哪些页面需要预加载,以及预加载时机。下面是一个示例配置…...

c#删除文件和目录到回收站
之前在c上遇到过这个问题,折腾许久才解决了,这次在c#上再次遇到这个问题,不过似乎容易了一些,亲测代码如下,两种删除方式都写在代码中了。 直接上完整代码: using Microsoft.VisualBasic.FileIO; using Sy…...

GESP2024年12月认证C++六级( 第三部分编程题(1)树上游走)
参考程序: #include <iostream> #include <string>using namespace std;int main() {long long n, s; // n为移动次数,s为初始节点编号string moves; // 移动指令串// 输入处理cin >> n >> s;cin >> moves;long long…...

Redis数据结构服务器
Redis数据结构服务器 什么是Redis数据结构服务器 的概念和特点 是一个开源(BSD许可),内存中的数据结构存储服务器,可用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如字符串(strings)…...
【向量数据库 Milvus】centos8源码安装和部署 Milvus 2.5.3
在龙晰操作系统(LoongArch 架构)的 CentOS 8 环境中通过源码安装和部署 Milvus 2.5.3 可能会面临一些挑战,因为 Milvus 的官方支持主要集中在 x86 和 ARM 架构上。以下是一个详细的安装步骤,但需要注意,某些依赖项可能…...

MySQL数据库(SQL分类)
SQL分类 分类全称解释DDLData Definition Language数据定义语言,用来定义数据库对象(数据库,表,字段)DMLData Manipulation Language数据操作语言,用来对数据库表中的数据进行增删改DQLData Query Languag…...
C++实现设计模式---原型模式 (Prototype)
原型模式 (Prototype) 原型模式 是一种创建型设计模式,它通过复制现有对象来创建新对象,而不是通过实例化。 意图 使用原型实例指定要创建的对象类型,并通过复制该原型来生成新对象。提供一种高效创建对象的方式,尤其是当对象的…...

鸿蒙面试 2025-01-10
写了鉴权工具,你在项目中申请了那些权限?(常用权限) 位置权限 : ohos.permission.LOCATION_IN_BACKGROUND:允许应用在后台访问位置信息。 ohos.permission.LOCATION:允许应用访问精确的位置信息…...

Linux Top 命令 load average 指标解读
前言 作为平台开发的同学,维护平台稳定性是我们最基本的工作职责,下面主要介绍下top 命令里 ,load average 这个指标如何去衡量机器负载程度。 概念介绍 load average 是系统在过去 1 分钟、5 分钟、15 分钟 的平均负载,它表示运…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...