当前位置: 首页 > news >正文

【Block总结】ELGCA模块,池化-转置(PT)注意力和深度卷积有效聚合局部和全局上下文信息

ELGCA结构

论文题目:ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection
论文链接:https://arxiv.org/pdf/2403.17909
官方github:https://github.com/techmn/elgcnet

高效局部-全局上下文聚合器(ELGCA)是ELGC-Net框架中的核心模块,旨在有效捕获遥感图像中的局部和全局上下文信息。其结构主要包括以下几个方面:

  1. Siamese编码器:ELGC-Net采用Siamese架构,通过两个相同的编码器分别处理输入的时间序列图像。这种设计使得模型能够有效地提取和比较两个图像之间的特征。

  2. 池化-转置(PT)注意力机制:ELGCA引入了一种新颖的PT注意力机制,通过池化操作来增强全局上下文的捕获,同时利用转置卷积来恢复特征图的空间分辨率。这种机制能够在保持计算效率的同时,捕获更丰富的上下文信息。

  3. 深度卷积:通过深度卷积,ELGCA能够在不同的空间尺度上提取特征,从而增强模型对细微变化的敏感性。这种方法有效地减少了模型的参数数量,同时提高了特征提取的效率。

  4. 融合模块:在特征提取后,ELGCA通过融合模块将来自不同图像的特征进行整合,生成最终的变化检测输出。这一过程确保了模型能够综合考虑局部和全局信息,从而提高检测精度。
    在这里插入图片描述

优点

ELGCA的设计带来了多个显著的优点:

  1. 提高检测精度:通过有效聚合局部和全局上下文信息,ELGCA显著提高了遥感变化检测的准确性。实验结果表明,ELGC-Net在多个挑战性数据集上均超越了现有的最先进方法。

  2. 减少计算复杂性:ELGCA通过引入高效的注意力机制和深度卷积,减少了模型的计算复杂性和参数数量,使得ELGC-Net在资源受限的环境中也能高效运行。

  3. 适应性强:ELGCA能够自适应地处理不同尺度和不同类型的遥感图像,增强了模型在多种应用场景下的适用性,包括城市监测、环境变化分析等。

  4. 轻量化设计:ELGC-Net还提供了一个轻量级变体(ELGC-Net-LW),在保持性能的同时,进一步减少了计算资源的需求,适合在边缘设备上进行实时变化检测。

综上所述,高效局部-全局上下文聚合器(ELGCA)通过其创新的设计和实现,不仅提升了遥感变化检测的性能,还为实际应用提供了更高的灵活性和效率。

代码结构


import torch
import torch.nn as nnclass ELGCA(nn.Module):"""Efficient local global context aggregation moduledim: number of channels of inputheads: number of heads utilized in computing attention"""def __init__(self, dim, heads=4):super().__init__()self.heads = headsself.dwconv = nn.Conv2d(dim // 2, dim // 2, 3, padding=1, groups=dim // 2)self.qkvl = nn.Conv2d(dim // 2, (dim // 4) * self.heads, 1, padding=0)self.pool_q = nn.AvgPool2d(kernel_size=3, stride=2, padding=1)self.pool_k = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)self.act = nn.GELU()def forward(self, x):B, C, H, W = x.shapex1, x2 = torch.split(x, [C // 2, C // 2], dim=1)# apply depth-wise convolution on half channelsx1 = self.act(self.dwconv(x1))# linear projection of other half before computing attentionx2 = self.act(self.qkvl(x2))x2 = x2.reshape(B, self.heads, C // 4, H, W)q = torch.sum(x2[:, :-3, :, :, :], dim=1)k = x2[:, -3, :, :, :]q = self.pool_q(q)k = self.pool_k(k)v = x2[:, -2, :, :, :].flatten(2)lfeat = x2[:, -1, :, :, :]qk = torch.matmul(q.flatten(2), k.flatten(2).transpose(1, 2))qk = torch.softmax(qk, dim=1).transpose(1, 2)x2 = torch.matmul(qk, v).reshape(B, C // 4, H, W)x = torch.cat([x1, lfeat, x2], dim=1)return xif __name__ == '__main__':# 创建一个随机输入张量,形状为 (batch_size,height×width,channels)input = torch.rand(1, 64,40, 40)# 实例化ELGCA模块block = ELGCA(64,4)# 前向传播output = block(input)# 打印输入和输出的形状print(input.size())print(output.size())

输出结果

torch.Size([1, 64, 40, 40])
torch.Size([1, 64, 40, 40])

主要组件

  1. 初始化方法 (__init__):

    • dim: 输入通道数。
    • heads: 注意力头的数量,默认为4。
    • dwconv: 深度卷积层,用于对输入的一半通道进行卷积操作,增强局部特征提取。
    • qkvl: 线性投影层,将另一半通道的特征映射到多个注意力头。
    • pool_qpool_k: 池化层,用于对查询(Q)和键(K)进行下采样,分别使用平均池化和最大池化。
    • act: 激活函数,使用GELU(高斯误差线性单元)。
  2. 前向传播方法 (forward):

    • 输入 x 的形状为 (B, C, H, W),其中 B 是批量大小,C 是通道数,HW 是特征图的高度和宽度。
    • 使用 torch.split 将输入 x 分为两部分 x1x2,每部分的通道数为 C // 2
    • x1 应用深度卷积,提取局部特征。
    • x2 进行线性投影,准备计算注意力。
    • x2 重塑为 (B, heads, C // 4, H, W),以便于后续的注意力计算。
    • 计算查询(Q)、键(K)和值(V):
      • qx2 的前 heads-3 个通道的和。
      • kx2 的倒数第三个通道。
      • vx2 的倒数第二个通道,展平为二维。
      • lfeatx2 的最后一个通道,保留用于后续拼接。
    • qk 进行池化,减少计算量。
    • 计算注意力权重 qk,并通过softmax归一化。
    • 使用注意力权重对值(V)进行加权求和,得到新的特征图 x2
    • 最后,将 x1lfeatx2 在通道维度上拼接,形成最终输出。

总结

ELGCA模块通过深度卷积和注意力机制的结合,有效地聚合了局部和全局上下文信息。这种设计不仅提高了特征提取的效率,还降低了计算复杂性,使得ELGC-Net在遥感变化检测任务中表现出色。

相关文章:

【Block总结】ELGCA模块,池化-转置(PT)注意力和深度卷积有效聚合局部和全局上下文信息

ELGCA结构 论文题目:ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection 论文链接:https://arxiv.org/pdf/2403.17909 官方github:https://github.com/techmn/elgcnet 高效局部-全局上下文聚合器&…...

MERN全栈脚手架(MongoDB、Express、React、Node)与Yeoman详解

MERN 全栈脚手架是一种用于快速构建基于 MongoDB、Express、React 和 Node.js 的全栈应用的框架或模板。它帮助开发者快速启动项目,减少了从零开始配置的时间。以下是关于 MERN 全栈脚手架的详细解析。 一、MERN 技术栈简介 MongoDB: 文档型数据库,用于…...

基于springboot+vue+微信小程序的宠物领养系统

基于springbootvue微信小程序的宠物领养系统 一、介绍 本项目利用SpringBoot、Vue和微信小程序技术,构建了一个宠物领养系统。 本系统的设计分为两个层面,分别为管理层面与用户层面,也就是管理者与用户,管理权限与用户权限是不…...

如何使用策略模式并让spring管理

1、策略模式公共接口类 BankFileStrategy public interface BankFileStrategy {String getBankFile(String bankType) throws Exception; } 2、策略模式业务实现类 Slf4j Component public class ConcreteStrategy implements BankFileStrategy {Overridepublic String ge…...

react中hooks之useRef 用法总结

1. 基本概念 useRef 是 React 的一个 Hook,返回一个可变的 ref 对象,其 .current 属性被初始化为传入的参数。这个对象在组件的整个生命周期内保持不变。 2. 主要用途和特性 2.1 获取 DOM 元素实例 function TextInputWithFocusButton() {const inpu…...

使用 Docker 部署 Java 项目(通俗易懂)

目录 1、下载与配置 Docker 1.1 docker下载(这里使用的是Ubuntu,Centos命令可能有不同) 1.2 配置 Docker 代理对象 2、打包当前 Java 项目 3、进行编写 DockerFile,并将对应文件传输到 Linux 中 3.1 编写 dockerfile 文件 …...

如何在Ubuntu上安装和配置Git

版本控制系统(VCS)是软件开发过程中不可或缺的工具之一,它帮助开发者跟踪代码变更、协作开发以及管理不同版本的项目。Git作为当前最流行的分布式版本控制系统,因其高效性和灵活性而广受青睐。本文将指导你如何在Ubuntu操作系统上…...

FPGA 21 ,深入理解 Verilog 中的基数,以及二进制数与十进制数之间的关系( Verilog中的基数 )

目录 前言 一. 基数基础 1.1 基数介绍 2.1 基数符号 3.1 二进制数 二. 二进制与十进制数 三. 二进制数 3.1 定义寄存器类型变量 3.2 定义线网类型变量 3.3 赋值操作 3.4 解析二进制数为十进制数 四. 代码示例 五. 注意事项 六. 更多操作 前言 在Verilog中&#…...

【redis】redis-cli命令行工具的使用

redis-cli命令行工具是一个功能强大的Redis客户端&#xff0c;它允许用户与Redis数据库进行交互和管理。 以下是一些常用参数的使用说明&#xff1a; 基本连接参数 -h, --host <hostname>&#xff1a;指定要连接的Redis服务器的主机名或IP地址。如果未指定&#xff0c;…...

使用Matplotlib显示中文的方法

1 问题提出 使用图1所示的代码进行matplotlib绘图时&#xff0c;因为其默认不支持中文&#xff0c;此时无法显示正确内容&#xff0c;如图2所示。 图1 matplotlib绘图绘图代码 图2 matplotlib无法显示中文 2 问题解决 2.1 设置全局字体 在图1所示的代码中&#xff0c;第13…...

SQL Server2022详细安装教程

1. 打开SQL Server官网&#xff1a;SQL Server 下载 | Microsoft 2. 选择Developer版 3. 下载好安装包&#xff0c;打开&#xff0c;选择自定义 4. 选择下载位置&#xff0c;最好不要在C盘即主磁盘即可。等待下载 5. 下载成功之后会弹出这个框 6. 点击“安装”&#…...

家里温度随心控,假期出行更舒适~

春节假期马上到来啦&#xff01;这是放松身心、陪伴家人的最佳时机~      但旅途结束的温差变化、空气质量问题是否让你有些担忧呢&#xff1f;      别担心&#xff01;有了约克VRF中央空调&#xff0c;让你的假期更加舒心无忧~      清新空气&#xff0c;自在出游…...

压力测试详解

压力测试 压力测试是一种软件测试&#xff0c;用于验证软件应用程序的稳定性和可靠性。压力测试的目标是在极其沉重的负载条件下测量软件的健壮性和错误处理能力&#xff0c;并确保软件在危急情况下不会崩溃。它甚至可以测试超出正常工作点的测试&#xff0c;并评估软件在极端…...

从epoll事件的视角探讨TCP:三次握手、四次挥手、应用层与传输层之间的联系

目录 一、应用层与TCP之间的联系 二、 当通信双方中的一方如客户端主动断开连接时&#xff0c;仅是在客户端的视角下连接已经断开&#xff0c;在服务端的眼中&#xff0c;连接依然存在&#xff0c;为什么&#xff1f;——触发EPOLLRDHUP事件&#xff1a;对端关闭连接或停止写…...

Redis复制(replica)

Redis主从复制 [Redis主从复制]&#xff08;replica&#xff09;是一个多Redis实例进行数据同步的过程&#xff0c;其中一个实例是主实例&#xff08;Master&#xff09;&#xff0c;其他实例是从实例&#xff08;Slave&#xff09;。主实例负责处理命令请求&#xff0c;而从实…...

[云讷科技] 用于软件验证的仿真环境

我们使用Pursuit自动驾驶仪为各种场景设计仿真环境&#xff0c;以便用户可以在模拟环境中直接验证他们的软件&#xff0c;无需现场测试。该环境基于Gazebo引擎。 1. 工作区目录 模拟环境的工作区位于提供的U盘中的~/pursuit_space/sitl_space_pursuit中。用户可以按照用户手册…...

使用 Vite 和 Vue 框架创建组件库

在前端开发中&#xff0c;组件化开发已成为一种高效、可维护的方式。通过创建组件库&#xff0c;不仅可以提高代码复用率&#xff0c;还能方便地在不同项目之间共享组件。本文将详细介绍如何使用 Vite 和 Vue 框架创建一个组件库&#xff0c;并将其导出供其他项目使用。为保持一…...

【数据结构学习笔记】19:跳表(Skip List)

介绍 跳表是一个能在 O ( n l o g n ) O(nlogn) O(nlogn)时间完成查找、插入、删除的数据结构&#xff0c;相比于树形结构优点就是很好写&#xff08;所以也用于实现Redis ZSet&#xff09;。其核心思想就是维护一个元素有序的&#xff0c;能随机提升索引层数的链表。最下面一…...

【8】深入理解 Go 语言中的协程-从基础到高级应用

文章目录 一、引言 &#x1f31f;二、协程基础概念 &#x1f9d0;&#xff08;一&#xff09;什么是协程&#xff08;二&#xff09;协程与线程、进程的区别三、协程的创建与启动 &#x1f680;&#xff08;一&#xff09;使用 go 关键字创建协程&#xff08;二&#xff09;简单…...

深入理解 ECMAScript 2024 新特性:字符串 isWellFormed 方法

ECMAScript 2024 引入了一个新的字符串实例方法&#xff1a;String.prototype.isWellFormed。这一新增功能是为了帮助开发者更容易地验证字符串是否为有效的 Unicode 文本。本文将详细介绍这一方法的使用场景、实现原理及其在实际应用中的价值。 String.prototype.isWellFormed…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...