当前位置: 首页 > news >正文

完整地实现了推荐系统的构建、实验和评估过程,为不同推荐算法在同一数据集上的性能比较提供了可重复实验的框架

{"cells": [{"cell_type": "markdown","metadata": {},"source": ["# 基于用户的协同过滤算法"]},{"cell_type": "code","execution_count": 1,"metadata": {},"outputs": [],"source": ["# 导入包\n","import random\n","import math\n","import time\n","from tqdm import tqdm"]},{"cell_type": "markdown","metadata": {},"source": ["## 一. 通用函数定义"]},{"cell_type": "code","execution_count": 2,"metadata": {},"outputs": [],"source": ["# 定义装饰器,监控运行时间\n","def timmer(func):\n","    def wrapper(*args, **kwargs):\n","        start_time = time.time()\n","        res = func(*args, **kwargs)\n","        stop_time = time.time()\n","        print('Func %s, run time: %s' % (func.__name__, stop_time - start_time))\n","        return res\n","    return wrapper"]},{"cell_type": "markdown","metadata": {},"source": ["### 1. 数据处理相关\n","1. load data\n","2. split data"]},{"cell_type": "code","execution_count": 3,"metadata": {},"outputs": [],"source": ["class Dataset():\n","    \n","    def __init__(self, fp):\n","        # fp: data file path\n","        self.data = self.loadData(fp)\n","    \n","    @timmer\n","    def loadData(self, fp):\n","        data = []\n","        for l in open(fp):\n","            data.append(tuple(map(int, l.strip().split('::')[:2])))\n","        return data\n","    \n","    @timmer\n","    def splitData(self, M, k, seed=1):\n","        '''\n","        :params: data, 加载的所有(user, item)数据条目\n","        :params: M, 划分的数目,最后需要取M折的平均\n","        :params: k, 本次是第几次划分,k~[0, M)\n","        :params: seed, random的种子数,对于不同的k应设置成一样的\n","        :return: train, test\n","        '''\n","        train, test = [], []\n","        random.seed(seed)\n","        for user, item in self.data:\n","            # 这里与书中的不一致,本人认为取M-1较为合理,因randint是左右都覆盖的\n","            if random.randint(0, M-1) == k:  \n","                test.append((user, item))\n","            else:\n","                train.append((user, item))\n","\n","        # 处理成字典的形式,user->set(items)\n","        def convert_dict(data):\n","            data_dict = {}\n","            for user, item in data:\n","                if user not in data_dict:\n","                    data_dict[user] = set()\n","                data_dict[user].add(item)\n","            data_dict = {k: list(data_dict[k]) for k in data_dict}\n","            return data_dict\n","\n","        return convert_dict(train), convert_dict(test)"]},{"cell_type": "markdown","metadata": {},"source": ["### 2. 评价指标\n","1. Precision\n","2. Recall\n","3. Coverage\n","4. Popularity(Novelty)"]},{"cell_type": "code","execution_count": 4,"metadata": {},"outputs": [],"source": ["class Metric():\n","    \n","    def __init__(self, train, test, GetRecommendation):\n","        '''\n","        :params: train, 训练数据\n","        :params: test, 测试数据\n","        :params: GetRecommendation, 为某个用户获取推荐物品的接口函数\n","        '''\n","        self.train = train\n","        self.test = test\n","        self.GetRecommendation = GetRecommendation\n","        self.recs = self.getRec()\n","        \n","    # 为test中的每个用户进行推荐\n","    def getRec(self):\n","        recs = {}\n","        for user in self.test:\n","            rank = self.GetRecommendation(user)\n","            recs[user] = rank\n","        return recs\n","        \n","    # 定义精确率指标计算方式\n","    def precision(self):\n","        all, hit = 0, 0\n","        for user in self.test:\n","            test_items = set(self.test[user])\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                if item in test_items:\n","                    hit += 1\n","            all += len(rank)\n","        return round(hit / all * 100, 2)\n","    \n","    # 定义召回率指标计算方式\n","    def recall(self):\n","        all, hit = 0, 0\n","        for user in self.test:\n","            test_items = set(self.test[user])\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                if item in test_items:\n","                    hit += 1\n","            all += len(test_items)\n","        return round(hit / all * 100, 2)\n","    \n","    # 定义覆盖率指标计算方式\n","    def coverage(self):\n","        all_item, recom_item = set(), set()\n","        for user in self.test:\n","            for item in self.train[user]:\n","                all_item.add(item)\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                recom_item.add(item)\n","        return round(len(recom_item) / len(all_item) * 100, 2)\n","    \n","    # 定义新颖度指标计算方式\n","    def popularity(self):\n","        # 计算物品的流行度\n","        item_pop = {}\n","        for user in self.train:\n","            for item in self.train[user]:\n","                if item not in item_pop:\n","                    item_pop[item] = 0\n","                item_pop[item] += 1\n","\n","        num, pop = 0, 0\n","        for user in self.test:\n","            rank = self.recs[user]\n","            for item, score in rank:\n","                # 取对数,防止因长尾问题带来的被流行物品所主导\n","                pop += math.log(1 + item_pop[item])\n","                num += 1\n","        return round(pop / num, 6)\n","    \n","    def eval(self):\n","        metric = {'Precision': self.precision(),\n","                  'Recall': self.recall(),\n","                  'Coverage': self.coverage(),\n","                  'Popularity': self.popularity()}\n","        print('Metric:', metric)\n","        return metric"]},{"cell_type": "markdown","metadata": {},"source": ["## 二. 算法实现\n","1. Random\n","2. MostPopular\n","3. UserCF\n","4. UserIIF"]},{"cell_type": "code","execution_count": 5,"metadata": {},"outputs": [],"source": ["# 1. 随机推荐\n","def Random(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 可忽略\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation,推荐接口函数\n","    '''\n","    items = {}\n","    for user in train:\n","        for item in train[user]:\n","            items[item] = 1\n","    \n","    def GetRecommendation(user):\n","        # 随机推荐N个未见过的\n","        user_items = set(train[user])\n","        rec_items = {k: items[k] for k in items if k not in user_items}\n","        rec_items = list(rec_items.items())\n","        random.shuffle(rec_items)\n","        return rec_items[:N]\n","    \n","    return GetRecommendation"]},{"cell_type": "code","execution_count": 6,"metadata": {},"outputs": [],"source": ["# 2. 热门推荐\n","def MostPopular(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 可忽略\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation, 推荐接口函数\n","    '''\n","    items = {}\n","    for user in train:\n","        for item in train[user]:\n","            if item not in items:\n","                items[item] = 0\n","            items[item] += 1\n","        \n","    def GetRecommendation(user):\n","        # 随机推荐N个没见过的最热门的\n","        user_items = set(train[user])\n","        rec_items = {k: items[k] for k in items if k not in user_items}\n","        rec_items = list(sorted(rec_items.items(), key=lambda x: x[1], reverse=True))\n","        return rec_items[:N]\n","    \n","    return GetRecommendation"]},{"cell_type": "code","execution_count": 7,"metadata": {},"outputs": [],"source": ["# 3. 基于用户余弦相似度的推荐\n","def UserCF(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 超参数,设置取TopK相似用户数目\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation, 推荐接口函数\n","    '''\n","    # 计算item->user的倒排索引\n","    item_users = {}\n","    for user in train:\n","        for item in train[user]:\n","            if item not in item_users:\n","                item_users[item] = []\n","            item_users[item].append(user)\n","    \n","    # 计算用户相似度矩阵\n","    sim = {}\n","    num = {}\n","    for item in item_users:\n","        users = item_users[item]\n","        for i in range(len(users)):\n","            u = users[i]\n","            if u not in num:\n","                num[u] = 0\n","            num[u] += 1\n","            if u not in sim:\n","                sim[u] = {}\n","            for j in range(len(users)):\n","                if j == i: continue\n","                v = users[j]\n","                if v not in sim[u]:\n","                    sim[u][v] = 0\n","                sim[u][v] += 1\n","    for u in sim:\n","        for v in sim[u]:\n","            sim[u][v] /= math.sqrt(num[u] * num[v])\n","    \n","    # 按照相似度排序\n","    sorted_user_sim = {k: list(sorted(v.items(), \\\n","                               key=lambda x: x[1], reverse=True)) \\\n","                       for k, v in sim.items()}\n","    \n","    # 获取接口函数\n","    def GetRecommendation(user):\n","        items = {}\n","        seen_items = set(train[user])\n","        for u, _ in sorted_user_sim[user][:K]:\n","            for item in train[u]:\n","                # 要去掉用户见过的\n","                if item not in seen_items:\n","                    if item not in items:\n","                        items[item] = 0\n","                    items[item] += sim[user][u]\n","        recs = list(sorted(items.items(), key=lambda x: x[1], reverse=True))[:N]\n","        return recs\n","    \n","    return GetRecommendation"]},{"cell_type": "code","execution_count": 8,"metadata": {},"outputs": [],"source": ["# 4. 基于改进的用户余弦相似度的推荐\n","def UserIIF(train, K, N):\n","    '''\n","    :params: train, 训练数据集\n","    :params: K, 超参数,设置取TopK相似用户数目\n","    :params: N, 超参数,设置取TopN推荐物品数目\n","    :return: GetRecommendation, 推荐接口函数\n","    '''\n","    # 计算item->user的倒排索引\n","    item_users = {}\n","    for user in train:\n","        for item in train[user]:\n","            if item not in item_users:\n","                item_users[item] = []\n","            item_users[item].append(user)\n","    \n","    # 计算用户相似度矩阵\n","    sim = {}\n","    num = {}\n","    for item in item_users:\n","        users = item_users[item]\n","        for i in range(len(users)):\n","            u = users[i]\n","            if u not in num:\n","                num[u] = 0\n","            num[u] += 1\n","            if u not in sim:\n","                sim[u] = {}\n","            for j in range(len(users)):\n","                if j == i: continue\n","                v = users[j]\n","                if v not in sim[u]:\n","                    sim[u][v] = 0\n","                # 相比UserCF,主要是改进了这里\n","                sim[u][v] += 1 / math.log(1 + len(users))\n","    for u in sim:\n","        for v in sim[u]:\n","            sim[u][v] /&#

相关文章:

完整地实现了推荐系统的构建、实验和评估过程,为不同推荐算法在同一数据集上的性能比较提供了可重复实验的框架

{"cells": [{"cell_type": "markdown","metadata": {},"source": ["# 基于用户的协同过滤算法"]},{"cell_type": "code","execution_count": 1,"metadata": {},"ou…...

DRV8311三相PWM无刷直流电机驱动器

1 特性 • 三相 PWM 电机驱动器 – 三相无刷直流电机 • 3V 至 20V 工作电压 – 24V 绝对最大电压 • 高输出电流能力 – 5A 峰值电流驱动能力 • 低导通状态电阻 MOSFET – TA 25C 时,RDS(ON) (HS LS) 为210mΩ(典型值) • 低功耗睡眠模式…...

Mysql--运维篇--备份和恢复(逻辑备份,mysqldump,物理备份,热备份,温备份,冷备份,二进制文件备份和恢复等)

MySQL 提供了多种备份方式,每种方式适用于不同的场景和需求。根据备份的粒度、速度、恢复时间和对数据库的影响,可以选择合适的备份策略。主要备份方式有三大类:逻辑备份(mysqldump),物理备份和二进制文件备…...

机器学习-归一化

文章目录 一. 归一化二. 归一化的常见方法1. 最小-最大归一化 (Min-Max Normalization)2. Z-Score 归一化(标准化)3. MaxAbs 归一化 三. 归一化的选择四. 为什么要进行归一化1. 消除量纲差异2. 提高模型训练速度3. 增强模型的稳定性4. 保证正则化项的有效…...

Linux 串口检查状态的实用方法

在 Linux 系统中,串口通信是非常常见的操作,尤其在嵌入式系统、工业设备以及其他需要串行通信的场景中。为了确保串口设备的正常工作,检查串口的连接状态和配置信息是非常重要的。本篇文章将介绍如何在 Linux 上检查串口的连接状态&#xff0…...

Qt的核心机制概述

Qt的核心机制概述 1. 元对象系统(The Meta-Object System) 基本概念:元对象系统是Qt的核心机制之一,它通过moc(Meta-Object Compiler)工具为继承自QObject的类生成额外的代码,从而扩展了C语言…...

微调神经机器翻译模型全流程

MBART: Multilingual Denoising Pre-training for Neural Machine Translation 模型下载 mBART 是一个基于序列到序列的去噪自编码器,使用 BART 目标在多种语言的大规模单语语料库上进行预训练。mBART 是首批通过去噪完整文本在多种语言上预训练序列到序列模型的方…...

Cesium加载地形

Cesium的地形来源大致可以分为两种,一种是由Cesium官方提供的数据源,一种是第三方的数据源,官方源依赖于Cesium Assets,如果设置了AccessToken后,就可以直接使用Cesium的地形静态构造方法来获取数据源CesiumTerrainPro…...

gitlab runner正常连接 提示 作业挂起中,等待进入队列 解决办法

方案1 作业挂起中,等待进入队列 重启gitlab-runner gitlab-runner stop gitlab-runner start gitlab-runner run方案2 启动 gitlab-runner 服务 gitlab-runner start成功启动如下 [rootdocserver home]# gitlab-runner start Runtime platform …...

C#对动态加载的DLL进行依赖注入,并对DLL注入服务

文章目录 什么是依赖注入概念常用的依赖注入实现什么是动态加载定义示例对动态加载的DLL进行依赖注入什么是依赖注入 概念 依赖注入(Dependency Injection,简称 DI)是一种软件设计模式,用于解耦软件组件之间的依赖关系。在 C# 开发中,它主要解决的是类与类之间的强耦合问题…...

HDMI接口

HDMI接口 前言各版本区别概述(Overview)接口接口类型Type A/E 引脚定义Type B 引脚定义Type C 引脚定义Type D 引脚定义 传输流程概述Control Period前导码字符边界同步Control Period 编/解码 Data Island PeriodLeading/Trailing Guard BandTERC4 编/解…...

A/B 测试:玩转假设检验、t 检验与卡方检验

一、背景:当“审判”成为科学 1.1 虚拟场景——法庭审判 想象这样一个场景:有一天,你在王国里担任“首席审判官”。你面前站着一位嫌疑人,有人指控他说“偷了国王珍贵的金冠”。但究竟是他干的,还是他是被冤枉的&…...

第143场双周赛:最小可整除数位乘积 Ⅰ、执行操作后元素的最高频率 Ⅰ、执行操作后元素的最高频率 Ⅱ、最小可整除数位乘积 Ⅱ

Q1、最小可整除数位乘积 Ⅰ 1、题目描述 给你两个整数 n 和 t 。请你返回大于等于 n 的 最小 整数,且该整数的 各数位之积 能被 t 整除。 2、解题思路 问题拆解: 题目要求我们找到一个整数,其 数位的积 可以被 t 整除。 数位的积 是指将数…...

【STM32】LED状态翻转函数

1.利用状态标志位控制LED状态翻转 在平常编写LED状态翻转函数时,通常利用状态标志位实现LED状态的翻转。如下所示: unsigned char led_turn_flag; //LED状态标志位,1-点亮,0-熄灭/***************************************函…...

uniapp 小程序 textarea 层级穿透,聚焦光标位置错误怎么办?

前言 在开发微信小程序时,使用 textarea 组件可能会遇到一些棘手的问题。最近我在使用 uniapp 开发微信小程序时,就遇到了两个非常令人头疼的问题: 层级穿透:由于 textarea 是原生组件,任何元素都无法遮盖住它。当其…...

汽车 SOA 架构下的信息安全新问题及对策漫谈

摘要:随着汽车行业的快速发展,客户和制造商对车辆功能的新需求促使汽车架构从面向信号向面向服务的架构(SOA)转变。本文详细阐述了汽车 SOA 架构的协议、通信模式,并与传统架构进行对比,深入分析了 SOA 给信…...

Unity-Mirror网络框架-从入门到精通之RigidbodyPhysics示例

文章目录 前言示例一、球体的基础配置二、三个球体的设置差异三、示例意图LatencySimulation前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。本系列文章将为读者提供对Mirror网络框架的深入了解,涵盖从基础到高级的多个主题。Mirror是一个用于Unity的开…...

小程序如何引入腾讯位置服务

小程序如何引入腾讯位置服务 1.添加服务 登录 微信公众平台 注意:小程序要企业版的 第三方服务 -> 服务 -> 开发者资源 -> 开通腾讯位置服务 在设置 -> 第三方设置 中可以看到开通的服务,如果没有就在插件管理中添加插件 2.腾讯位置服务…...

H3CNE-12-静态路由(一)

静态路由应用场景: 静态路由是指由管理员手动配置和维护的路由 路由表:路由器用来妆发数据包的一张“地图” 查看命令: dis ip routing-table 直连路由:接口配置好IP地址并UP后自动生成的路由 静态路由配置: ip…...

多线程锁

在并发编程中,锁(Lock)是一种用于控制多个线程对共享资源访问的机制。正确使用锁可以确保数据的一致性和完整性,避免出现竞态条件(Race Condition)、死锁(Deadlock)等问题。Java 提供…...

ZooKeeper 核心知识全解析:架构、角色、节点与应用

1.ZooKeeper 分布式锁怎么实现的 ZooKeeper 是一个高效的分布式协调服务,它提供了简单的原语集来构建更复杂的同步原语和协调数据结构。利用 ZooKeeper 实现分布式锁主要依赖于它的顺序节点(Sequential Node)特性以及临时节点(Ep…...

笔记本电脑 选购 回收 特权模式使用 指南

笔记本电脑 factor 无线网卡:有些笔记本无法检测到特定频段的信息,会导致连不上校园网 sudo iwlist wlp2s0 scan | grep Frequency > net.txt cat net.txt>表示用终端输出覆盖后续文件,>>表示添加到后续文件的末尾 一种更简…...

2023-2024 学年 广东省职业院校技能大赛(高职组)“信息安全管理与评估”赛题一

2023-2024 学年 广东省职业院校技能大赛(高职组“信息安全管理与评估”赛题一) 模块一:网络平台搭建与设备安全防护第一阶段任务书任务 1:网络平台搭建任务 2:网络安全设备配置与防护DCRS:DCFW:DCWS:DCBC:WAF: 模块二:网络安全事件…...

C#补充----反射,特性,迭代器,特殊语法,值类型运用类型。

1.反射&#xff1a;通过type 获取类中的数据。创建实例&#xff0c;并赋值。 《1》获取类的方式 《2》反射的应用 <1>获取类型的所有公共成员 <2>获取构造函数 <3>获取类型的 公共成员变量 <4>获取类型的 公共方法 <5>.获取类型的 属性 <6&g…...

深度学习核函数

一、核函数的基本概念 核函数在机器学习中具有重要应用价值&#xff0c;常用于支持向量机&#xff08;SVM&#xff09;等算法中。 核函数是面试中经常被考到的知识点&#xff0c;对于找工作和实际数据转换都有重要作用。 二、数据建模与核函数的作用 数据越多&#xff0c;可…...

Spring MVC流程一张图理解

由于现在项目中大部分都是使用springboot了&#xff0c;但是ssm中的springmvc还是可以了解一下 1 、用户发送请求至前端控制器 DispatcherServlet 。 2 、 DispatcherServlet 收到请求调用 HandlerMapping 处理器映射器。 3 、处理器映射器找到具体的处理器 ( 可以根据 xml 配…...

计算机网络速成

前言&#xff1a;最近在做一些动态的crypto&#xff0c;但是配置总搞不好&#xff0c;正好也有学web的想法&#xff0c;就先学学web再回去做密码&#xff0c;速成视频推荐b站建模老哥 目录 计算机网络概述网络的范围分级电路交换网络&#xff08;电路交换&#xff09;报文交换网…...

spring.profiles.active不同优先级

1、在editConfiguration中配置profiles.activedev会同时影响项目取application-dev.properties、bootstrap-dev.yaml&#xff0c;且这种方式优先级最高&#xff0c;会覆盖application.properties、bootstrap.yaml中的spring.profiles.active配置 2、在application.properties配…...

我这不需要保留本地修改, 只需要拉取远程更改

如果你不需要保留本地修改&#xff0c;只需要拉取远程更改并强制将本地分支与远程分支同步&#xff0c;可以按照以下步骤操作&#xff1a; 1. 丢弃本地修改 首先&#xff0c;丢弃所有本地未提交的修改&#xff1a; git reset --hard这会重置工作目录和暂存区&#xff0c;丢弃…...

源码编译安装httpd 2.4,提供系统服务管理脚本并测试(两种方法实现)

下载 httpd 2.4 源码&#xff1a; wget https://dlcdn.apache.org/httpd/httpd-2.4.x.tar.gztar -zxvf httpd-2.4.x.tar.gzcd httpd-2.4.x配置、编译和安装&#xff1a; ./configure --prefix/usr/local/apache2 --enable-so --enable-ssl --enable-cgi makesudo make install实…...