当前位置: 首页 > news >正文

RAG技术:是将知识库的文档和问题共同输入到LLM中

RAG技术

RAG技术是将知识库的文档和问题共同输入到LLM中

RAG技术是先从知识库中检索出与问题相关的文档片段,然后将这些检索到的文档片段与问题一起输入到LLM中进行回答。具体过程如下:

文本分块

由于LLM的上下文窗口有限,需要将长文本资料分割成较小的块,以便LLM能够有效地处理。

嵌入及存储块到向量数据库

使用向量嵌入技术为每个文本块生成向量表示,并存储这些向量到向量数据库中。

检索

当用户提出查询时,系统利用向量数据库进行检索,找到与查询语义上最相似的文本块。

生成回答

检索到的文本块与用户的问题一起作为LLM的输入,LLM根据接收到的上下文信息和问题生成回答。

RAG技术即检索增强生成技术,是一种将检索系统与生成模型相结合的技术架构,利用向量数据库从外部知识库中检索相关信息增强大模型生成的能力。以下是一些具体应用的例子:

客户服务领域

相关文章:

RAG技术:是将知识库的文档和问题共同输入到LLM中

RAG技术 RAG技术是将知识库的文档和问题共同输入到LLM中 RAG技术是先从知识库中检索出与问题相关的文档片段,然后将这些检索到的文档片段与问题一起输入到LLM中进行回答。具体过程如下: 文本分块 由于LLM的上下文窗口有限,需要将长文本资料分割成较小的块,以便LLM能够有…...

持续集成 01|Gitee介绍、Pycharm使用Gitee

目录 一、理论 二、 git的简介与安装 三、Gitee 1、注册网易163邮箱 2、注册Gitee账号 3、git和gitee管理代码工作原理 三、PyCharm安装配置Gitee 四、Pycharm使用Gitee插件的五种场景 1、将 Gitee的新仓库 Checkout(检出)到 Pycharm中 2、推送…...

信息安全、网络安全和数据安全的区别和联系

信息安全、网络安全和数据安全是信息安全领域的三大支柱,它们之间既存在区别又相互联系。以下是对这三者的详细比较: 一.区别 1.信息安全 定义 信息安全是指为数据处理系统建立和采用的技术和管理的安全保护,保护计算机硬件、软件和数据不…...

C++实现设计模式---抽象工厂模式 (Abstract Factory)

抽象工厂模式 (Abstract Factory) 抽象工厂模式 是一种创建型设计模式,提供一个接口,用于创建一组相关或互相依赖的对象,而无需指定它们的具体类。 意图 提供一个创建一组相关对象的接口,而无需指定它们的具体类。解决产品对象之…...

K8S开启/关闭审计日志

K8S默认禁用审计 开启/关闭 k8s 审计日志 默认 Kubernetes 集群不会输出审计日志信息。通过以下配置,可以开启 Kubernetes 的审计日志功能。 准备审计日志的 Policy 文件配置 API 服务器,开启审计日志重启并验证 准备审计日志 Policy 文件 apiVersio…...

css盒子水平垂直居中

目录 1采用flex弹性布局: 2子绝父相margin:负值: 3.子绝父相margin:auto: 4子绝父相transform: 5通过伪元素 6table布局 7grid弹性布局 文字 水平垂直居中链接:文字水平垂直居中-CSDN博客 以下为盒子…...

px、em 和 rem 的区别:深入理解 CSS 中的单位

文章目录 前言一、px - 像素 (Pixel)二、em - 相对父元素字体大小 (Ems)三、rem - 相对于根元素字体大小 (Root Ems)四、综合比较结语 前言 在CSS中,px、em和rem是三种用于定义尺寸(如宽度、高度、边距、填充等)的长度单位。它们各自有不同的…...

基于STM32设计的粮食仓库(粮仓)环境监测系统

一、前言 1.1 项目开发背景 随着现代农业的发展和粮食储存规模的扩大,粮仓环境的智能化监控需求日益增长。传统的粮仓管理方式通常依赖人工检测和定期巡查,效率低下且容易出现疏漏,无法及时发现潜在问题,可能导致粮食受潮、霉变…...

【后端面试总结】tls中.crt和.key的关系

tls中.crt和.key的关系 引言 在现代网络通信中,特别是基于SSL/TLS协议的加密通信中,.crt和.key文件扮演着至关重要的角色。这两个文件分别代表了数字证书和私钥,是确保通信双方身份认证和数据传输安全性的基石。本文旨在深入探讨TLS中.crt和…...

日拱一卒(20)——leetcode学习记录:大小为 K 且平均值大于等于阈值的子数组数目

一、题目 给定数组,统计数组中长度为k的子数组且该子数组的平均值大于threshold的数量 二、思路 滑动窗思路,计算长度为k的滑动窗的平均值,关键点在于,每滑动一次,只需要去掉头增加尾,而不需要重新全部计…...

项目练习:若依管理系统字典功能-Vue前端部分

文章目录 一、情景说明二、若依Vue相关代码及配置1、utils代码2、components组件3、api接口代码4、Vuex配置5、main.js配置 三、使用方法1、html部分2、js部分 一、情景说明 我们在做web系统的时候,肯定会遇到一些常量选择场景。 比如,性别:…...

apache-skywalking-apm-10.1.0使用

apache-skywalking-apm-10.1.0使用 本文主要介绍如何使用apache-skywalking-apm-10.1.0,同时配合elasticsearch-8.17.0-windows-x86_64来作为存储 es持久化数据使用。 步骤如下: 一、下载elasticsearch-8.17.0-windows-x86_64 1、下载ES(elasticsear…...

计算机视觉算法实战——视频分析(Video Analysis)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​​​​​​ ​​​​​​​​​​​​ ​​​​​ 视频分析是计算机视觉中的一个重要领域,旨在从视频数据中提取有用的信息&…...

全网首发:编译libssh,产生类似undefined reference to `EVP_aes_256_ctr@OPENSSL_1_1_0‘的大量错误

具体错误 前面和后面的: /opt/linux/x86-arm/aarch64-mix210-linux/host_bin/../lib/gcc/aarch64-linux-gnu/7.3.0/../../../../aarch64-linux-gnu/bin/ld: warning: libcrypto.so.1.1, needed by ../lib/libssh.so.4.10.1, not found (try using -rpath or -rpat…...

用python实战excel和word自动化

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 python实现excel和word自动化--批量处理 前言--需求快要期末了需要,提交一个年级的学生成绩数据,也就是几百份。当前我们收集了一份excel表格&#xf…...

【云计算】OpenStack云计算平台

OpenStack云计算平台框架搭建 1.先换源 先换成阿里源: curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo 2.安装框架 yum -y install centos-release-openstack-train 3.安装客户端 yum -y install python-openstackclient 但…...

好用的php商城源码有哪些?

选择一个优秀的商城工具,能更好地帮助大家建立一个好用的商城系统。目前比较流行的都是开源PHP商城系统,那么现实中都有哪些好用的PHP商城源码值得推荐呢?下面就带大家一起来了解一下。 1.TigShop 【推荐指数】:★★★★★☆ 【推…...

docker安装Nginx UI

开源地址:nginx-ui/README-zh_CN.md at dev 0xJacky/nginx-ui GitHub docker run -dit \ --namenginx-ui \ --restartalways \ -e TZAsia/Shanghai \ -v /Users/xiaoping/docker/appdata/nginx:/etc/nginx \ -v /Users/xiaoping/docker/appdata/nginx-ui:/etc/ng…...

为深度学习创建PyTorch张量 - 最佳选项

为深度学习创建PyTorch张量 - 最佳选项 正如我们所看到的,PyTorch张量是torch.Tensor​ PyTorch类的实例。张量的抽象概念与PyTorch张量之间的区别在于,PyTorch张量为我们提供了一个可以在代码中操作的具体实现。 在上一篇文章中,我们看到了…...

详解数据增强中的平移shft操作

Shift 平移是指在数据增强(data augmentation)过程中,通过对输入图像或目标进行位置偏移(平移),让目标在图像中呈现出不同的位置。Shift 平移的目的是增加训练数据的多样性,从而提高模型对目标在…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...

c# 局部函数 定义、功能与示例

C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

GraphQL 实战篇:Apollo Client 配置与缓存

GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4,后7...