当前位置: 首页 > news >正文

分布式ID的实现方案

1. 什么是分布式ID

​ 对于低访问量的系统来说,无需对数据库进行分库分表,单库单表完全可以应对,但是随着系统访问量的上升,单表单库的访问压力逐渐增大,这时候就需要采用分库分表的方案,来缓解压力。

​ 在实际的业务场景中,我们常常需要一个唯一ID来确保数据的唯一性,对于单表单库来说,我们通常采用自增ID来作为标识,但是分库分表之后,自增ID的唯一性就无法保证。

分布式ID的实现方案-01

​ 如上图所示,同一业务下的3张数据表,可能存在相同的ID,导致无法根据ID来确保数据的唯一性,因此,在分库分表的架构中,我们就需要使用分布式ID,来确保同一业务下的多张数据表或者多张数据库,数据的唯一性。

2. 分布式ID的实现方案

1. 基于UUID生成

​ UUID是一组由32位的16进制数据所构成,所以可以生成16^32个数据,也就是说,平均每纳秒可以生成1兆组数据,约100亿年才可以使用完。

​ UUID的格式为8-4-4-4-12,如:62f51e7e-a3ca-45ab-bf3f-2c3279f2991e,在JDK中,可以通过如下方式生成一组UUID:

    public static void main(String[] args) {UUID uuid = UUID.randomUUID();System.out.println("UUID:" + uuid);}

UUID:e27cc5fa-8655-4095-b682-e12d178791dd

​ 虽然UUID的实现方案简单便捷,但是由于其长度较长,在数据库中存储会占用过多资源,并且如果作为主键,由于UUID的无序性,会导致其存储的数据位置频繁变动,对性能影响较大。

2. 基于数据库生成
1. 基于特定起始值和步长分配ID

​ 例如现在分了3张表,分别是table_1、table_2、table_3,那么可以给table_1分配自增ID的起始值是1;为table_2分配自增ID的起始值是2,为table_3分配自增ID的起始值是3,步长均为3,这样同一业务下的这3张表,也可以确保其ID的唯一性。

以MySQL为例,可以在MySQL的配置文件中,设置自增ID起始值和步长

自增ID起始值:auto_increment_increment = value

自增ID步长:auto_increment_offset = value

​ 以上方式,虽然可以实现全局唯一ID的生成,但是该方案高度依赖数据库,一旦数据库发生异常,便直接影响业务,并且在主库发生异常,主从切换不一致时,可能会出现ID重复的异常。

2. 基于特定数据表分配ID

​ 可以新建一张数据表,专门存放当前最新的ID,每次需要获取ID值时,都将该数据表中的ID自增一次,并返回最新的ID值。

副本-分布式ID的实现方案-03

​ 以上方式,同样可以生成全局唯一ID,但是也同样高度依赖数据库,在进行实际的业务场景中,增加了一次与业务无关的读写操作,在高并发场景下,ID数据表的压力很大,对系统的QPS影响较大,并且当数据库发生异常时,也会直接影响原有的业务执行。

3. 基于Redis生成

​ 可以通过Redis的INCRINCRBY指令来实行分布式ID的生成,每次请求时,都从Redis中获取一次分布式ID。

分布式ID的实现方案-04

​ 当QPS较小时,此种方案可以应对,但是对于高并发场景,此种方案对于单台Redis服务器的性能要求较高,因此,需要搭建Redis集群,来缓解单台Redis服务器的压力,但是对于Redis集群来说,分布式ID的生成又会出现MySQL集群出现的问题,并且此种方案同样高度依赖Redis,一旦Redis服务器出现异常,就会影响到整个业务流程,同时此种方案引入了Redis中间件,增加了系统的复杂度。

4. 基于雪花算法生成

​ 雪花算法是由Twitter开源的一个分布式ID生成的解决方案,该分布式ID总共占用64bit存储空间,对于Java来说,正好使用long类型来进行存储。

第1位:始终是0,可以看做是符号位,不使用。

第2-42位:总共41位,表示时间戳,单位是毫秒,总共可以表示2^41个数字,即69年的时间。

第43-52位:总共10位,表示机器数,总共可以表示2^10=1024台机器,通常情况下,不需要部署这么多台机器,因此,一般将前5位表示数据中心,后5位表示机器数,即总共可以表示32个数据中心,每个数据中心有32台机器。

第53-64位:总共12位,表示自增序列,可以表示2^12=4096个数。

​ 这样划分之后,相当于在1ms之内,一个数据中心的一台服务器中,可以产生4096个不重复的有序ID。

分布式ID的实现方案-05

​ 具体的Java代码实现如下:

/**** 雪花算法** @author niutucode*/
public class Snowflake {/*** 开始时间戳*/private static final long START_TIMESTAMP = 1736820033851L;/*** 机器位数*/private static final long MACHINE_BIT = 10L;/*** 序列号位数*/private static final long SEQUENCE_BIT = 12L;/*** 机器最大值 1023*/private static final long MAX_MACHINE_NUM = ~(-1L << MACHINE_BIT);/*** 序列号最大值 4095*/private static final long MAX_SEQUENCE = ~(-1L << SEQUENCE_BIT);/*** 机器标识向左移动的位数*/private static final long MACHINE_LEFT = SEQUENCE_BIT;/*** 时间戳向左移动的位数*/private static final long TIMESTAMP_LEFT = SEQUENCE_BIT + MACHINE_BIT;/*** 机器ID*/private long machineId;/*** 序列号*/private long sequence = -1L;/*** 上一次时间戳*/private long lastTimeStamp = 0L;/*** 构造器** @param machineId 机器ID*/public Snowflake(long machineId) {if (machineId > MAX_MACHINE_NUM || machineId < 0) {throw new IllegalArgumentException("机器ID不能大于" + MAX_MACHINE_NUM + "或者小于0");}this.machineId = machineId;}/*** 产生下一个时间戳** @param lastTimeStamp 上一次生成的时间戳* @return 下一个时间戳*/private long nextTimestamp(long lastTimeStamp) {long timestamp = System.currentTimeMillis();while (timestamp <= lastTimeStamp) {timestamp = System.currentTimeMillis();}return timestamp;}/*** 获取分布式ID* 该方法需线程安全,如果在分布式系统中,应该使用分布式锁来保证该方法的线程安全,如果不设置,在高并发场景中,      * 可能会出现多个线程生成同一ID的异常* @return 分布式ID*/public synchronized long nextId() {long timestamp = System.currentTimeMillis();if (timestamp < lastTimeStamp) {throw new RuntimeException("时钟回拨异常");}if (timestamp == lastTimeStamp) {// 相同毫秒内,序列号自增sequence = (sequence + 1) & MAX_SEQUENCE;// 同一毫秒的序列数已经达到最大if (sequence == 0) {timestamp = nextTimestamp(lastTimeStamp);}} else {sequence = 0L;}lastTimeStamp = timestamp;return (timestamp - START_TIMESTAMP) << TIMESTAMP_LEFT | machineId << MACHINE_LEFT | sequence;}
}
public static void main(String[] args) {Snowflake snowflake = new Snowflake(0);System.out.println("分布式ID:" + snowflake.nextId());
}

分布式ID:9161748250624

​ 通过雪花算法生成分布式ID,生成的ID是有序递增的,不依赖于第三方系统,在高并发场景下,依然具有良好的性能,相较于UUID方式生成分布式ID,该方式性能更高,占用空间小,且递增有序,可读性更好。

​ 但是雪花算法也存在一定的局限性,当系统发生时钟回拨时,该方法就会处于不可用的状态,可以使用百度的UidGenerator或者美团的Leaf规避这一风险,在实际的开发中,可以根据需要,选择合适的方案,来实现分布式ID的生成。

相关文章:

分布式ID的实现方案

1. 什么是分布式ID ​ 对于低访问量的系统来说&#xff0c;无需对数据库进行分库分表&#xff0c;单库单表完全可以应对&#xff0c;但是随着系统访问量的上升&#xff0c;单表单库的访问压力逐渐增大&#xff0c;这时候就需要采用分库分表的方案&#xff0c;来缓解压力。 ​…...

Py之cv2:cv2(OpenCV,opencv-python)库的简介、安装、使用方法(常见函数、图像基本运算等)

1. OpenCV简介 1.1 OpenCV定义与功能 OpenCV&#xff08;Open Source Computer Vision Library&#xff09;是一个开源的计算机视觉和机器学习软件库。它为计算机视觉应用程序提供了一个通用的基础设施&#xff0c;并加速了在商业产品中使用机器感知。作为BSD许可的产品&…...

如何学习网络安全?有哪些小窍门?

学好网络安全其实没有所谓的捷径&#xff0c;也没有什么小窍门。 入门网络安全首先要有浓厚的学习兴趣&#xff0c;不然很容易就变成了从入门到放弃了。 其次要能静下心&#xff0c;踏踏实实的打好基础。如果你是零基础&#xff0c;建议从Web安全入手&#xff0c;课程难度相对…...

Dart语言的数据结构

Dart语言中的数据结构探讨 引言 Dart是一种现代化的编程语言&#xff0c;主要用于构建移动应用、Web应用和服务端应用。随着应用程序的复杂性日益增加&#xff0c;选择合适的数据结构显得尤为重要。数据结构不仅影响程序的性能&#xff0c;也影响程序的可维护性和可扩展性。本…...

TabPFN - 表格数据基础模型

文章目录 一、关于 TabPFN&#x1f310;TabPFN生态系统 二、快速入门&#x1f3c1;1、安装2、基本用法 三、使用技巧&#x1f4a1;四、开发&#x1f6e0;️1、设置环境2、在提交之前3、运行测试 一、关于 TabPFN TabPFN是表格数据的基础模型&#xff0c;它优于传统方法&#x…...

AOF日志:宕机了Redis如何避免数据丢失?

文章目录 AOF 日志是如何实现的&#xff1f;三种写回策略日志文件太大了怎么办&#xff1f;AOF 重写会阻塞吗?小结每课一问 更多redis相关知识 如果有人问你&#xff1a;“你会把 Redis 用在什么业务场景下&#xff1f;”我想你大概率会说&#xff1a;“我会把它当作缓存使用&…...

MAC上安装Octave

1. 当前最新版Octave是9.3版本&#xff0c;需要把mac os系统升级到14版本&#xff08;本人之前的版本是10版本&#xff09; https://wiki.octave.org/Octave_for_macOS octave的历史版本参考此文档&#xff1a;Octave for macOS (outdated) - Octavehttps://wiki.octave.org/Oc…...

C 语言中二维数组的退化

目录 1. 一维数组的退化 2.字符串数组的退化 3. 二维数组的退化 3.1 为什么退化为 int (*)[4] 而不是 int **&#xff1f; 3.2举例说明 3.3 .总结 在 C 语言中&#xff0c;数组名在大多数情况下会退化为指向其第一个元素的指针&#xff0c;这种机制称为数组退化&#xf…...

Notion 推出捏脸应用 | Deving Weekly #15

CEF-Detector-X 现在 Chromium 占据了桌面应用的大壁江山&#xff0c;典型的有 Electron 框架&#xff0c;底层就是基于 Chromium 内核&#xff0c;上百 M 的臃肿包体积一直别人诟病。 CEF-Detector-X 可以检测你电脑有多少个 基于 Chromium 应用&#xff0c;并且会生成一份「…...

C# Linq 查询

1.Linq 查询表达式基础 Linq 查询应用程序始终将源数据视为 IEnumerable<T> 或 IQueryable<T> 集合。 LINQ查询表达式包含8个基本子句,分别为from、select、group、where、orderby、join、let和into。 子 句备注from指定数据源和范围变量select指定当执行查询…...

ES7【2016】、ES8【2017】新增特性

ES7【2016】新增特性 幂指数操作符 在ES7【2016】中新增了幂指数操作&#xff0c;幂指数操作符是**。它用于指数计算 基本语法&#xff1a;baseValue ** exponent 参数说明&#xff1a;baseValue是基数&#xff0c;exponent是指数。 let base 2; let exponent 4; let resul…...

64细分步进电机驱动器TMC2209

封装和丝印 典型电路1 典型电路2 应用 兼容设计升级 3D 打印机 打印机、POS 办公和家庭自动化 纺织、缝纫机 闭路电视&#xff0c; 安保 ATM&#xff0c; 现金回收机 暖 通 空调 电池供电设备 特点和优势 2 相步进电机&#xff0c;线圈电流&#xff08;峰值&#xff09;高达…...

C# 获取PDF文档中的字体信息(字体名、大小、颜色、样式等

在设计和出版行业中&#xff0c;字体的选择和使用对最终作品的质量有着重要影响。然而&#xff0c;有时我们可能会遇到包含未知字体的PDF文件&#xff0c;这使得我们无法准确地复制或修改文档。获取PDF中的字体信息可以解决这个问题&#xff0c;让我们能够更好地处理这些文件。…...

linux 安装PrometheusAlert配置钉钉告警

在 Linux 上安装 PrometheusAlert 并配置钉钉告警的步骤如下: 1. 准备工作 钉钉机器人: 在钉钉群中创建一个机器人,获取 Webhook URL。示例 Webhook URL:https://oapi.dingtalk.com/robot/send?access_token=your_dingtalk_token。PrometheusAlert 安装包: 从 Prometheus…...

【华为路由/交换机的ssh远程设置】

华为路由/交换机的ssh远程设置 R1&#xff08;client&#xff09;&#xff1a;10.1.1.1 R2&#xff08;server&#xff09;&#xff1a;10.1.1.2 R2服务端配置&#xff1a; 生成本机密钥 查看生成的密钥 设置AAA授权验证方式&#xff0c;并设置支持SSH协议 创建本地用户&…...

性能测试 - Locust WebSocket client

Max.Bai 2024.10 0. 背景 Locust 是性能测试工具&#xff0c;但是默认只支持http协议&#xff0c;就是默认只有http的client&#xff0c;需要其他协议的测试必须自己扩展对于的client&#xff0c;比如下面的WebSocket client。 1. WebSocket test Client “”“ Max.Bai W…...

html中鼠标位置信息

pageX&#xff1a;鼠标距离页面的最左边的距离&#xff0c;包括滚动条的长度。clientX&#xff1a;鼠标距离浏览器视口的左距离&#xff0c;不包括滚动条。offsetX&#xff1a;鼠标到事件源左边的距离。movementX&#xff1a;鼠标这次触发的事件的位置相对于上一次触发事件的位…...

kubernetes v1.29.XX版本HPA、KPA、VPA并压力测试

序言&#xff1a; 在大型电商、购物、直播活动期间&#xff0c;对于火爆流量的激增&#xff0c;如何保障业务稳定并且做到资源不浪费&#xff0c;自动回收。 场景&#xff1a;kubernetes 原生容器化承载业务流量&#xff08;非云环境&#xff09; 方案&#xff1a;kubernetes自…...

flutter 常用UI组件

文章目录 1. Toast 文本提示框oktoastbot_toast2. loading 加载窗flutter_easyloading3. 对话框gex dialog4.下拉刷新pull_to_refresh5. pop 窗custom_pop_up_menu6. pin code 密码框pinput7. 二维码qr_flutter8. swiper 滚动组件carousel_sliderflutter_swiper_view9. Badge 角…...

HarmonyOS NEXT应用开发边学边玩系列:从零实现一影视APP (五、电影详情页的设计实现)

在上一篇文章中&#xff0c;完成了电影列表页的开发。接下来&#xff0c;将进入电影详情页的设计实现阶段。这个页面将展示电影的详细信息&#xff0c;包括电影海报、评分、简介以及相关影人等。将使用 HarmonyOS 提供的常用组件&#xff0c;并结合第三方库 nutpi/axios 来实现…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...