SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
目录
- SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果

基本描述
SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
采用动态自适应权重优化发现者位置
动态自适应权重可以根据搜索进度调整权重,以平衡全局搜索和局部搜索。
定义一个权重函数,该函数随着迭代次数的增加而动态调整。
在更新发现者位置时,使用动态权重。
柯西变异
柯西分布具有重尾特性,适合用于跳出局部最优解,提高全局搜索能力。
生成一个符合柯西分布的随机数;将该随机数乘以一个变异步长,用于调整当前解的位置。
反向搜索策略
反向搜索策略是在当前解的基础上,生成其反向解,并评估两个解的优劣,以选择更优的解。
对于当前解,计算其反向解;评估当前解和反向解的适应度值。
选择适应度值更优的解作为新的当前解。

程序设计
- 完整代码私信博主回复SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 读取数据
res = xlsread('data.xlsx');%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1; % 特征维度
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%% 划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本mid_size = size(mid_res, 1); % 得到不同类别样本个数mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数end
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现 目录 SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现分类效果基本描述程序设计参考资料 分类效果 基本描述 SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长…...
基于Java+SpringBoot+Vue的前后端分离的体质测试数据分析及可视化设计
基于JavaSpringBootVue的前后端分离的体质测试数据分析及可视化设计 前言 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末附源码…...
Ansible实战:如何正确选择 command 和shell模块?
在使用Ansible进行自动化运维时,command 和 shell 模块是我们执行命令的好帮手。虽然它们看起来很相似,但在功能特性和适用场景上其实有着明显的不同。正确选择合适的模块不仅能够提高任务的效率,还能帮助我们规避一些潜在的风险。在这篇文章…...
机器学习:监督学习与非监督学习
监督学习是利用带有标签的数据进行训练,模型通过学习输入和输出之间的关系来进行预测。也就是说,数据集中既有输入特征,也有对应的输出标签,模型的目标是找到从输入到输出的映射关系。 而无监督学习则使用没有标签的数据进行训练,模型的任务是发现数据中的内在结构或模式…...
近红外简单ROI分析matlab(NIRS_SPM)
本次笔记主要想验证上篇近红外分析是否正确,因为叠加平均有不同的计算方法,一种是直接将每个通道的5分钟实时长单独进行叠加平均,另一种是将通道划分为1分钟的片段,将感兴趣的通道数据进行对应叠加平均,得到一个总平均…...
运输层安全协议SSL
安全套接字层 SSL (Secure Socket Layer) SSL 作用在端系统应用层的 HTTP 和运输层之间,在 TCP 之上建立起一个安全通道,为通过 TCP 传输的应用层数据提供安全保障。 应用层使用 SSL 最多的就是 HTTP,但 SSL 并非仅用于 HTTP,而是…...
“扣子”开发之四:与千帆AppBuilder比较
上一个专题——“扣子”开发——未能落地,开始抱着极大的热情进入,但迅速被稚嫩的架构模型折磨打击,硬着头皮坚持了两周,终究还是感觉不实用不趁手放弃了。今天询问了下豆包,看看还有哪些比较好的AI开发平台࿰…...
Asp .Net Core 实现微服务:集成 Ocelot+Nacos+Swagger+Cors实现网关、服务注册、服务发现
什么是 Ocelot ? Ocelot是一个开源的ASP.NET Core微服务网关,它提供了API网关所需的所有功能,如路由、认证、限流、监控等。 Ocelot是一个简单、灵活且功能强大的API网关,它可以与现有的服务集成,并帮助您保护、监控和扩展您的…...
62_Redis服务器集群优化
Redis集群虽然具备高可用特性,且能实现自动故障恢复,但是如果使用不当,也会存在一些问题,总结如下。 集群完整性问题集群带宽问题数据倾斜问题客户端性能问题命令的集群兼容性问题Lua和事务问题1.集群完整性问题 在 Redis 集群的默认配置下,当节点检测到存在至少一个哈希…...
【React】静态组件动态组件
目录 静态组件动态组件创建一个构造函数(类)使用 class 实现组件**使用 function 实现类组件** 静态组件 函数组件是静态组件: 组件第一次渲染完毕后,无法基于内部的某些操作让组件更新「无法实现自更新」;但是,如果调用它的父组…...
深度学习中的卷积和反卷积(四)——卷积和反卷积的梯度
本系列已完结,全部文章地址为: 深度学习中的卷积和反卷积(一)——卷积的介绍 深度学习中的卷积和反卷积(二)——反卷积的介绍 深度学习中的卷积和反卷积(三)——卷积和反卷积的计算 …...
ASP.NET Core - IStartupFilter 与 IHostingStartup
ASP.NET Core - IStartupFilter 与 IHostingStartup 1. IStartupFilter2 IHostingStartup2.5.1 创建外部程序集2.5.2 激活外部程序集 1. IStartupFilter 上面讲到的方式虽然能够根据不同环境将Startup中的启动逻辑进行分离,但是有些时候我们还会可以根据应用中的功能…...
【零基础租赁实惠GPU推荐及大语言模型部署教程01】
租赁GPU推荐及大语言模型部署简易教程 1 官网地址2 注册账号及登录3 租用GPU3.1 充值(不限制充值最低金额,1元亦可)3.2 容器实例(实际就是你租用的GPU电脑)3.3 选择镜像(选择基础环境:框架版本和…...
接口传参 data格式和json格式区别是什么
接口传参 data格式和json格式区别是什么 以下是接口传参 data 格式和 JSON 格式的区别: 定义和范围 Data 格式: 是一个较为宽泛的概念,它可以指代接口传递参数时所使用的任何数据的组织形式。包括但不限于 JSON、XML、Form 数据、纯文本、二进…...
踏上 C++ 编程之旅:开篇之作
踏上 C 编程之旅:开篇之作 在计算机编程的广袤天地中,C 宛如一座巍峨的高峰,吸引着无数开发者攀登探索。今天,就让我们一同开启这段充满挑战与惊喜的 C 编程之旅,在代码的世界里开辟属于自己的道路。 一、为什么选择…...
docker在不删除容器的情况下修改端口映射
注意:必须先停止docker服务!!!! 1) 停止容器 2) 停止docker服务(systemctl stop docker) 3) 修改这个容器的hostconfig.json和config.v2.json文件中的端口 先查看容器id docker inspect jenkins 进入该目录 hostcon…...
Mysql tinyint与Java的数据类型的对应关系
参考资料 理解误区——mysql中tinyint与Java的数据类型的对应关系;tinyint(1) 与tinyint(4)的区别 1.1 tinyint字段取值 数据库字段类型为 tinyint,值为0或1,直接通过SQL语句查询的话,0会取出false;1会取出true目前就想取出的结果为 0 或 1 selectpg_id ,pg_name…...
mac intel芯片下载安卓模拟器
一、调研 目前主流两个模拟器: 雷神模拟器 不支持macosmumu模拟器pro版 不支持macos intel芯片 搜索到mumu的Q&A中有 “Intel芯片Mac如何安装MuMu?” q&a🔗:https://mumu.163.com/mac/faq/install-on-intel-mac.html 提…...
掌握 Ubuntu 终端 mv 与 rename 命令的高效重命名使用方法
在日常的计算任务中,文件重命名是一个经常性的需求。对于熟悉图形用户界面(GUI)的人来说,通过右键点击并选择“重命名”选项,这个过程简单直接。然而,当涉及到大量文件或需要自动化流程时,命令行…...
【Python】数据容器:列表,元组,字符串,集合字典及通用操作
文章目录 一.序列1.1list列表定义常用操作列表的遍历 1.2tuple元组定义常见操作元组的遍历 1.3str字符串定义常见操作字符串的遍历 1.4序列常用操作——切片 二.set集合定义常见操作集合的遍历 三.dict字典定义常用操作字典的嵌套 *数据容器对比总结四.数据容器的通用操作4.1通…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
基于开源AI智能名片链动2 + 1模式S2B2C商城小程序的沉浸式体验营销研究
摘要:在消费市场竞争日益激烈的当下,传统体验营销方式存在诸多局限。本文聚焦开源AI智能名片链动2 1模式S2B2C商城小程序,探讨其在沉浸式体验营销中的应用。通过对比传统品鉴、工厂参观等初级体验方式,分析沉浸式体验的优势与价值…...
Java数组Arrays操作全攻略
Arrays类的概述 Java中的Arrays类位于java.util包中,提供了一系列静态方法用于操作数组(如排序、搜索、填充、比较等)。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序(sort) 对数组进行升序…...
麒麟系统使用-进行.NET开发
文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的,如果需要进行.NET开发,则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET,所以要进…...
初探用uniapp写微信小程序遇到的问题及解决(vue3+ts)
零、关于开发思路 (一)拿到工作任务,先理清楚需求 1.逻辑部分 不放过原型里说的每一句话,有疑惑的部分该问产品/测试/之前的开发就问 2.页面部分(含国际化) 整体看过需要开发页面的原型后,分类一下哪些组件/样式可以复用,直接提取出来使用 (时间充分的前提下,不…...
【向量库】Weaviate 搜索与索引技术:从基础概念到性能优化
文章目录 零、概述一、搜索技术分类1. 向量搜索:捕捉语义的智能检索2. 关键字搜索:精确匹配的传统方案3. 混合搜索:语义与精确的双重保障 二、向量检索技术分类1. HNSW索引:大规模数据的高效引擎2. Flat索引:小规模数据…...
