当前位置: 首页 > news >正文

1 行命令引发的 Go 应用崩溃

1 行命令引发的Go应用崩溃

一、前言

不久前,阿里云 ARMS 团队、编译器团队、MSE 团队携手合作,共同发布并开源了 Go 语言的编译时自动插桩技术。该技术以其零侵入的特性,为 Go 应用提供了与 Java 监控能力相媲美的解决方案。开发者只需将 go build 替换为新编译命令 otel go build,就能实现对 Go 应用的全面监控和治理。

二、问题描述

近期,我们收到用户反馈,使用 otel go build -race 替代正常的 go build -race 命令后,编译生成的程序会导致崩溃。-race[3]是 Go 编译器的一个参数,用于检测数据竞争(data race)问题。通过为每个变量的访问添加额外检查,确保多个 goroutine 不会以不安全方式同时访问这些变量。

理论上,我们的工具不应影响-race 竞态检查的代码,因此出现崩溃的现象是非预期的,所以我们花了一些时间排查这个崩溃问题,崩溃的堆栈信息如下:

(gdb) bt#0  0x000000000041e1c0 in __tsan_func_enter ()#1  0x00000000004ad05a in racecall ()#2  0x0000000000000001 in ?? ()#3  0x00000000004acf99 in racefuncenter ()#4  0x00000000004ae7f1 in runtime.racefuncenter (callpc=4317632)#5  0x0000000000a247d8 in ../sdk/trace.(*traceContext).TakeSnapShot (tc=<optimized out>, ~r0=...)#6  0x00000000004a2c25 in runtime.contextPropagate#7  0x0000000000480185 in runtime.newproc1.func1 () #8  0x00000000004800e2 in runtime.newproc1 (fn=0xc00030a1f0, callergp=0xc0000061e0, callerpc=12379404, retVal0=0xc0002c8f00)#9  0x000000000047fc3f in runtime.newproc.func1 () #10 0x00000000004a992a in runtime.systemstack ()....

可以看到崩溃源于 __tsan_func_enter,而引发该问题的关键点是 runtime.contextPropagate。我们的工具在 runtime.newproc1 函数的开头插入了以下代码:

func newproc1(fn *funcval, callergp *g, callerpc uintptr) (retVal0 *g) {    // 我们插入的代码    retVal0.otel_trace_context = contextPropagate(callergp.otel_trace_context)
    ...}
// 我们插入的代码func contextPropagate(tls interface{}) interface{} {  if tls == nil {    return nil  }  if taker, ok := tls.(ContextSnapshoter); ok {    return taker.TakeSnapShot()  }  return tls}
// 我们插入的代码func (tc *traceContext) TakeSnapShot() interface{} {  ...}

TakeSnapShot 被 Go 编译器在函数入口和出口分别注入了 racefuncenter() 和 racefuncexit(),最终调用 __tsan_func_enter 导致崩溃。由此确定崩溃问题确实是我们的注入代码导致的,继续深入排查。

三、排查过程

3.1 崩溃根源

使用 objdump 查看 __tsan_func_enter 的源码,看到它接收两个函数参数,出错的地方是第一行 mov 0x10(%rdi),%rdx,它约等于 rdx = *(rdi + 0x10)。打印寄存器后发现 rdi = 0,根据调用约定,rdi 存放的是第一个函数参数,因此这里的问题就是函数第一个参数 thr 为 0。

// void __tsan_func_enter(ThreadState *thr, void *pc);000000000041e1c0 <__tsan_func_enter>:  41e1c0:  48 8b 57 10            mov    0x10(%rdi),%rdx  41e1c4:  48 8d 42 08            lea    0x8(%rdx),%rax  41e1c8:  a9 f0 0f 00 00         test   $0xff0,%eax  ...

那么第一个参数 thr 是谁传进来的呢?接着往上分析调用链。

3.2 调用链分析

出错的整个调用链是 racefuncenter(Go) -> racecall(Go) -> __tsan_func_enter(C)。需要注意的是,前两个函数都是 Go 代码,Go 函数调用 Go 函数遵循 Go 的调用约定。在 amd64 平台,前九个函数参数使用以下寄存器:

另外以下寄存器用于特殊用途:

后两个函数一个 Go 代码一个 C 代码,Go 调用 C 的情况下,遵循 System V AMD64 调用约定,在 Linux 平台上使用以下寄存器作为前六个参数:

理解了 Go 和 C 的调用约定之后,再来看整个调用链的代码:

TEXT  racefuncenter<>(SB), NOSPLIT|NOFRAME, $0-0  MOVQ  DX, BXx  MOVQ  g_racectx(R14), RARG0     // RSI存放thr  MOVQ  R11, RARG1                 // RDI存放pc  MOVQ  $__tsan_func_enter(SB), AX // AX存放__tsan_func_enter函数指针  CALL  racecall<>(SB)  MOVQ  BX, DX  RETTEXT  racecall<>(SB), NOSPLIT|NOFRAME, $0-0  ...  CALL  AX  // 调用__tsan_func_enter函数指针  ...

racefuncenter 将 g_racectx(R14) 和 R11 分别放入 C 调用约定的参数寄存器 RSI(RARG0) 和 RDI(RARG1),并将 __tsan_func_enter 放入 Go 调用约定的参数寄存器 RAX,然后调用 racecall,它进一步调用 __tsan_func_enter(RAX),这一系列操作大致相当于 __tsan_func_enter(g_racectx(R14), R11)。

不难看出,问题的根源在于 g_racectx(R14) 为 0。根据 Go 的调用约定 R14 存放当前 goroutine ,它不可能为 0 ,因此出问题的必然是 R14.racectx 字段为 0。为了避免无效努力,通过调试器 dlv 二次确认:

(dlv) p *(*runtime.g)(R14)runtime.g {        racectx: 0,        ...}

那么为什么当前 R14.racectx 为 0?下一步看看 R14 具体的状态。

3.3 协调程度

func newproc(fn *funcval) {  gp := getg()  pc := sys.GetCallerPC() #1  systemstack(func() {    newg := newproc1(fn, gp, pc, false, waitReasonZero) #2    ...  })}

经过排查,在代码 #1 处,R14.racectx 是正常的,但到了代码 #2 处,R14.racectx 就为空了,原因是 systemstack 被调用,它有一个切换协程的动作,具体如下:

// func systemstack(fn func())TEXT runtime·systemstack(SB), NOSPLIT, $0-8  ...  // 切换到g0协程  MOVQ  DX, g(CX)  MOVQ  DX, R14 // 设置 R14 寄存器  MOVQ  (g_sched+gobuf_sp)(DX), SP
  // 在g0协程上运行目标函数fn  MOVQ  DI, DX  MOVQ  0(DI), DI  CALL  DI
  // 切换回原始协程    ...

原来 systemstack 有一个切换协程的动作,会先把当前协程切换成 g0,然后执行 fn,最后恢复原始协程执行。

在 Go 语言的 GMP(Goroutine-Machine-Processor)调度模型中,每个系统级线程 M 都拥有一个特殊的 g0 协程,以及若干用于执行用户任务的普通协程 g。g0 协程主要负责当前 M 上用户 g 的调度工作。由于协程调度是不可抢占的,调度过程中会临时切换到系统栈(system stack)上执行代码。在系统栈上运行的代码是隐式不可抢占的,并且垃圾回收器不会扫描系统栈。

到这里我们已经知道执行 newproc1 时的协程总是 g0,而 g0.racectx 是在 main 执行开始时被主动设置为 0,最终导致程序崩溃:

// src/runtime/proc.go#main// The main goroutine.func main() {  mp := getg().m
  // g0 的 racectx 仅用于作为主 goroutine 的父级。    // 不应将其用作其他目的。  mp.g0.racectx = 0  ...

四、解决方案

到这里基本上可以做一个总结了,程序崩溃的原因如下:

  • newproc1 中插入的 contextPropagate 调用 TakeSnapshot,而 TakeSnapshot 被 go build -race 强行在函数开始插入了 racefuncenter() 函数调用,该函数将使用 racectx。

  • newproc1 是在 g0 协程执行下运行,该协程的 racectx 字段是 0,最终导致崩溃。

一个解决办法是给 TakeSnapshot 加上 Go 编译器的特殊指令 //go:norace,该指令需紧跟在函数声明后面,用于指定该函数的内存访问将被竞态检测器忽略,Go 编译器将不会强行插入 racefuncenter()调用。

五、疑惑一

runtime.newproc1 中不只调用了我们注入的 contextPropagate,还有其他函数调用,为什么这些函数没有被编译器插入 race 检查的代码(如 racefuncenter)?

经过排查后发现,Go 编译器会特殊处理 runtime 包,针对 runtime 包中的代码设置 NoInstrument 标志,从而跳过生成 race 检查的代码:

// /src/cmd/internal/objabi/pkgspecial.govar pkgSpecialsOnce = sync.OnceValue(func() map[string]PkgSpecial {    ...    for _, pkg := range runtimePkgs {        set(pkg, func(ps *PkgSpecial) {             ps.Runtime = true            ps.NoInstrument = true        })    }    ...})

六、疑惑二

理论上插入 //go:norace 之后问题应该得到解决,但实际上程序还是发生了崩溃。经过排查发现,TakeSnapShot 中有 map 初始化和 map 循环操作,这些操作会被编译器展开成 mapinititer() 等函数调用。这些函数直接手动启用了竞态检测器,而且无法加上 //go:norace:

func mapiterinit(t *abi.SwissMapType, m *maps.Map, it *maps.Iter) {  if raceenabled && m != nil {        // 主动的race检查    callerpc := sys.GetCallerPC()    racereadpc(unsafe.Pointer(m), callerpc, abi.FuncPCABIInternal(mapiterinit))  }    ...}

对此问题的解决办法是在 newproc1 注入的代码里面,避免使用 map 数据结构。

七、总结

以上就是 Go 自动插桩工具在使用 go build -race 时出现崩溃的分析全过程。通过对崩溃内容和调用链的排查,我们找到了产生问题的根本原因以及相应的解决方案。这将有助于我们在理解运行时机制的基础上,更加谨慎地编写注入到运行时的代码。

参考链接

[01] Go 自动插桩开源项目

https://github.com/alibaba/opentelemetry-go-auto-instrumentation

[02] 阿里云 ARMS Go Agent 商业版

https://help.aliyun.com/zh/arms/tracing-analysis/monitor-go-applications/

[03] Go 竞态检查

https://go.dev/doc/articles/race_detector

相关文章:

1 行命令引发的 Go 应用崩溃

一、前言 不久前&#xff0c;阿里云 ARMS 团队、编译器团队、MSE 团队携手合作&#xff0c;共同发布并开源了 Go 语言的编译时自动插桩技术。该技术以其零侵入的特性&#xff0c;为 Go 应用提供了与 Java 监控能力相媲美的解决方案。开发者只需将 go build 替换为新编译命令 o…...

ScratchLLMStepByStep:训练自己的Tokenizer

1. 引言 分词器是每个大语言模型必不可少的组件&#xff0c;但每个大语言模型的分词器几乎都不相同。如果要训练自己的分词器&#xff0c;可以使用huggingface的tokenizers框架&#xff0c;tokenizers包含以下主要组件&#xff1a; Tokenizer: 分词器的核心组件&#xff0c;定…...

G1原理—10.如何优化G1中的FGC

大纲 1.G1的FGC可以优化的点 2.一个bug导致的FGC(Kafka发送重试 subList导致List越来越大) 3.为什么G1的FGC比ParNew CMS要更严重 4.FGC的一些参数及优化思路 1.G1的FGC可以优化的点 (1)FGC的基本原理 (2)遇到FGC应该怎么处理 (3)应该如何操作来规避FGC (4)应该如何操…...

Java基础——概念和常识(语言特点、JVM、JDK、JRE、AOT/JIT等介绍)

我是一个计算机专业研0的学生卡蒙Camel&#x1f42b;&#x1f42b;&#x1f42b;&#xff08;刚保研&#xff09; 记录每天学习过程&#xff08;主要学习Java、python、人工智能&#xff09;&#xff0c;总结知识点&#xff08;内容来自&#xff1a;自我总结网上借鉴&#xff0…...

2025.1.16——三、supersqli 绕过|堆叠注入|handler查询法|预编译绕过法|修改原查询法

题目来源&#xff1a;攻防世界supersqli 目录 一、打开靶机&#xff0c;整理已知信息 二、sqlmap解题 step 1&#xff1a;爆数据库 step 2&#xff1a;爆表 二、手工注入解题 step 1&#xff1a;判断注入类型 step 2&#xff1a;判断字段数 step 3&#xff1a;查询数据…...

浅谈计算机网络03 | 现代网络组成

现代网络组成 一 、网络生态体系1.1网络生态系统的多元主体1.2 网络接入设施的多样类型 二、现代网络的典型体系结构解析三、高速网络技术3.1 以太网技术3.2 Wi-Fi技术的深度剖析3.2.1 应用场景的多元覆盖3.2.2 标准升级与性能提升 3.3 4G/5G蜂窝网的技术演进3.3.1 蜂窝技术的代…...

Red Hat8:搭建FTP服务器

目录 一、匿名FTP访问 1、新建挂载文件 2、挂载 3、关闭防火墙 4、搭建yum源 5、安装VSFTPD 6、 打开配置文件 7、设置配置文件如下几个参数 8、重启vsftpd服务 9、进入图形化界面配置网络 10、查看IP地址 11、安装ftp服务 12、遇到拒绝连接 13、测试 二、本地…...

EWM 批次管理 / Batch Management

目录 1 简介 2 业务数据 2.1 基于 PO&#xff0c;创建 ERP LE - Delivery 内向交货单&#xff0c;同时同步到 EWM 内向交货单 2.2 在 EWM 内向交货单&#xff0c;创建批次。EWM 批次创建的前提条件来自于物料主数据批次分类&#xff08;023&#xff09;。SAP 提供的标准条件…...

Java 面试题 - ArrayList 和 LinkedList 的区别,哪个集合是线程安全的?

Java 面试题 - ArrayList 和 LinkedList 的区别&#xff0c;哪个集合是线程安全的&#xff1f; 在 Java 开发中&#xff0c;ArrayList和LinkedList是两个常用的集合类&#xff0c;它们在数据结构和性能上有诸多不同&#xff0c;同时线程安全性也各有特点。深入理解这些差异&am…...

初学SpringBoot

目录 什么是SpringBoot 使用 Spring Boot有什么好处 Spring Boot 特点 在线构建 IntelliJ IDEA在线模板构建 IntelliJ IDEA 通maven项目构建 SpringBoot的常用配置 入口类和相关注解 定制Banner 修改banner图标 关闭banner 常规属性修改 tomcat端口号修改 常规属性…...

【网络云SRE运维开发】2025第3周-每日【2025/01/15】小测-【第14章ospf高级配置】理论和实操解析

文章目录 14.1 选择题解题思路和参考答案14.2 理论题解题思路和参考答案14.3 实操题解题思路和参考答案思科&#xff08;Cisco&#xff09;设备华为&#xff08;Huawei&#xff09;设备小米/锐捷&#xff08;或其他支持标准CLI命令的设备&#xff09;通过网络管理工具注意事项 …...

AWS S3 跨账户访问 Cross Account Access

进入S3对应的存储桶&#xff0c;上面选项选权限&#xff0c;存储桶策略 -- 编辑&#xff0c;输入对应的policy。 完全控制&#xff0c;包含上传删除权限&#xff0c;policy如下&#xff1a; {"Version": "2012-10-17","Statement": [{"Si…...

Ubuntu20.4和docker终端指令、安装Go环境、安装搜狗输入法、安装WPS2019:保姆级图文详解

目录 前言1、docker、node、curl版本查看终端命令1.1、查看docker版本1.2、查看node.js版本1.3、查看curl版本1.4、Ubuntu安装curl1.5、Ubuntu终端保存命令 2、安装docker-compose、Go语言2.1、安装docker-compose2.2、go语言安装步骤2.3、git版本查看 3、Ubuntu20.4安装搜狗输…...

Kotlin语言的正则表达式

Kotlin语言中的正则表达式 引言 正则表达式&#xff08;Regular Expression&#xff0c;简称Regex&#xff09;是一种用于匹配字符串中字符组合的工具。在数据处理、文本解析等领域&#xff0c;正则表达式以其强大的字符串处理能力得到了广泛的应用。而Kotlin作为一种现代的编…...

npm的包管理

从哪里下载包 国外有一家 IT 公司&#xff0c;叫做 npm,Inc.这家公司旗下有一个非常著名的网站: https://www.npmjs.com/&#xff0c;它是全球最大的包共享平台&#xff0c;你可以从这个网站上搜索到任何你需要的包&#xff0c;只要你有足够的耐心!到目前位置&#xff0c;全球约…...

深度学习在文本情感分析中的应用

引言 情感分析是自然语言处理&#xff08;NLP&#xff09;中的一个重要任务&#xff0c;旨在识别和提取文本中的主观信息。随着深度学习技术的发展&#xff0c;我们可以使用深度学习模型来提高情感分析的准确性和效率。本文将介绍如何使用深度学习进行文本情感分析&#xff0c…...

【大模型系列篇】数字人音唇同步模型——腾讯开源MuseTalk

之前有一期我们体验了阿里开源的半身数字人项目EchoMimicV2&#xff0c;感兴趣的小伙伴可跳转至《AI半身数字人开箱体验——开源项目EchoMimicV2》&#xff0c;今天带大家来体验腾讯开源的数字人音唇同步模型MuseTalk。 MuseTalk 是一个实时高品质音频驱动的唇形同步模型&#…...

Formality:参考设计/实现设计以及顶层设计

相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482​​​ Formality存在两个重要的概念&#xff1a;参考设计/实现设计和顶层设计&#xff0c;本文就将对此进行详细阐述。参考设计/实现设计是中两个重要的全局概念&am…...

RPA赋能内容创作:打造小红书入门词语图片的全自动化流程

&#x1f31f; 嗨&#xff0c;我是LucianaiB&#xff01; &#x1f30d; 总有人间一两风&#xff0c;填我十万八千梦。 &#x1f680; 路漫漫其修远兮&#xff0c;吾将上下而求索。 用RPA全自动化批量生产【入门词语】图片做小红书商单&#xff0c;保姆级工具开发教程 最近由…...

RPC 源码解析~Apache Dubbo

解析 RPC&#xff08;远程过程调用&#xff09;的源码可以帮助你深入理解其工作原理和实现细节。为了更好地进行源码解析&#xff0c;我们选择一个流行的 RPC 框架——Apache Dubbo 作为示例。Dubbo 是一个高性能、轻量级的开源 Java RPC 框架&#xff0c;广泛应用于企业级应用…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...