详解深度学习中的Dropout
Dropout是一种在神经网络训练中常用的正则化技术,其操作是在每次训练迭代中随机“丢弃”一部分神经元(即将其输出置为零)。以下是对这一操作的详细解释:
一、基本思想
Dropout的基本思想是减少神经元之间的复杂共适应关系,迫使网络在训练过程中不依赖于特定的神经元子集。这有助于增加模型的泛化能力,防止过拟合。
二、具体实现
随机选择:在每次训练迭代中,以一定的概率p(通常设定为0.2到0.5之间)随机选择一部分神经元进行丢弃。这意味着这些被选中的神经元在前向传播和反向传播时都不起作用。
输出置零:对于被选中的神经元,将其输出置为零。这相当于在神经网络中临时删除了这些神经元。
缩放未丢弃神经元的输出:为了保持输入数据的期望值不变,对于未被丢弃的神经元,其输出会按1/p进行缩放。这是因为丢弃了一部分神经元后,剩余神经元的输出需要被相应地放大,以保持整体输出的期望值不变。
反向传播时更新权重:在反向传播过程中,只有未被丢弃的神经元会更新其权重。被丢弃的神经元由于输出为零,不会对损失函数产生梯度贡献。
三、测试阶段的使用
在测试阶段,为了保证输出的一致性,通常不使用Dropout操作。而是将所有神经元的输出都乘以训练时的Dropout概率p(或者等价地,对未被丢弃的神经元的输出进行1/p的缩放,但考虑到所有神经元在测试时都被使用,因此实际上是对所有神经元的输出都乘以p,这相当于没有进行缩放)。这可以看作是在测试时将多个子网络的预测结果进行平均,从而提高模型的稳定性和准确性。
四、作用与效果
减少过拟合:通过随机丢弃神经元,Dropout能够强制模型在训练时不依赖于特定的神经元子集,从而减少了神经元之间的共适应性,降低了模型的过拟合风险。
增加泛化能力:由于每次训练迭代时使用的是不同的子网络(即不同神经元子集被丢弃),最终的模型相当于多个子网络的平均效果。这使得模型对不同的输入数据更加稳定,具有更好的泛化能力。
提高模型性能:在图像分类、自然语言处理和语音识别等任务中,Dropout已被证明可以提高模型的性能。
综上所述,Dropout是一种简单而有效的正则化方法,在防止神经网络过拟合方面发挥了重要作用。它通过随机丢弃神经元来减少神经元之间的复杂共适应关系,并迫使网络学习更加鲁棒的特征表示。
相关文章:
详解深度学习中的Dropout
Dropout是一种在神经网络训练中常用的正则化技术,其操作是在每次训练迭代中随机“丢弃”一部分神经元(即将其输出置为零)。以下是对这一操作的详细解释: 一、基本思想 Dropout的基本思想是减少神经元之间的复杂共适应关系&#…...
SQL-杂记1
PIVOT的使用: 行转列IIF()的使用:IIF( boolean_expression, true_value, false_value)多个字段使用MX()函数 SELECTD.ID,字段1,字段2,字段3,字段4,字段5,X.MinDateValue FROM 表名 D WITH(NOLOCK) OUTER APPLY (SELECT MIN(DateValue) AS MinDateValueFROM (VALUES (字段1),(字…...
Python(十七)excel指定列自动翻译成英文
前言 本章主要讲述在excel的指定列后面添加一列,并翻译成英文 一、效果图 二、代码 实际需求: # -*- codeing utf-8 -*- # time: 2025/1/16 16:32 # Author : Mikasa # # Aim:自动将客户发的货物清单里的商品名称,翻译成英文…...
Ubuntu20.04取消root账号自动登录的方法,触觉智能RK3568开发板演示
Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力…...
诡异的Spring @RequestBody驼峰命名字段映射失败为null问题记录
问题 一个非常常规的Spring Controller,代码如下: import lombok.RequiredArgsConstructor;Slf4j RestController RequiredArgsConstructor RequestMapping("/api/v1/config") public class ConfigController {private final ConfigService …...
YOLOv10改进,YOLOv10检测头融合RFAConv卷积,添加小目标检测层(四头检测)+CA注意机制,全网首发
摘要 空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制—…...
周末总结(2024/01/18)
工作 人际关系核心实践: 要学会随时回应别人的善意,执行时间控制在5分钟以内 坚持每天早会打招呼 遇到接不住的话题时拉低自己,抬高别人(无阴阳气息) 朋友圈点赞控制在5min以内,职场社交不要放在5min以外 职场的人际关系在面对利…...
LLM - 大模型 ScallingLaws 的迁移学习与混合训练(PLM) 教程(3)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145212097 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scalin…...
【软件开发过程管理规范】需求管理,需求分析,设计开发管理,测试管理(Word)
一、需求管理规程 1 简介 2 过程总体描述 2.1 过程概述 2.2 过程流程图 3 过程元素描述 3.1 准备阶段 3.2 需求调研 3.3 需求分析 软件开发人员及用户往往容易忽略信息沟通,这导致软件开发出来后不能很好地满足用户的需要,从而造成返工。而返工不仅在技术…...
计算机网络 (49)网络安全问题概述
前言 计算机网络安全问题是一个复杂且多维的领域,它涉及到网络系统的硬件、软件以及数据的安全保护,确保这些元素不因偶然的或恶意的原因而遭到破坏、更改或泄露。 一、计算机网络安全的定义 计算机网络安全是指利用网络管理控制和技术措施,保…...
RPA编程实践:Electron实践开始
文章目录 前言闲话少叙,打开官网版本发布安装在 Windows 上安装在 macOS 上安装在 Linux (Ubuntu) 上安装 前言 上回说道,我们electron适合于熟悉web开发,但想要研发桌面应用的人。 但我觉得这个需求应该不是很多。 因为使用electron&#…...
ORB-SLAM2源码学习:MapPoint.cc④: 新增地图点总结
前言 让我们来总结ORB-SLAM2 中的新增地图点。 1.在第一阶段跟踪中的恒速模型跟踪中新增地图点 针对双目相机或RGB-D相机,找出上一帧中具有有效深度值且不是地图点的特征点,将其中较近的点作为上一帧新的临时地图点, 并记录在向扯mlpTempo…...
2025西湖论剑-babytrace
前言 就做了下题目,pwn1/3 都是签到,pwn2 后面绕 ptrace 有点意思,简单记录一下 漏洞分析 子进程中的读/写功能没有检查负数的情况,存在越界读写: void __fastcall get_value(__int64 *int64_arr) {__int64 ll; //…...
绘图专用,26个常见流程图符号及其解释
关注作者 当您设计网站、构建应用程序或绘制业务系统时,您需要一种方法来清晰地绘制步骤和用户流程。虽然您可以使用流程图来概述这些过程,但箭头和方框只能帮助您到目前为止。为了清楚地表达您的意思,您需要流程图符号。 为了帮助解释每个流…...
【个人学习记录】软件开发生命周期(SDLC)是什么?
软件开发生命周期(Software Development Life Cycle,SDLC)是一个用于规划、创建、测试和部署信息系统的结构化过程。它包含以下主要阶段: 需求分析(Requirements Analysis) 收集并分析用户需求定义系统目标…...
自学SpringBoot笔记
概念 什么是SpringBoot? Spring Boot 是基于 Spring Framework 的一款开源框架,主要用于简化 Spring 应用程序的开发。它通过提供一系列的 开箱即用的功能 和 自动配置,让开发者可以快速构建生产级别的独立应用程序,而无需手动配…...
03JavaWeb——Ajax-Vue-Element(项目实战)
1 Ajax 1.1 Ajax介绍 1.1.1 Ajax概述 我们前端页面中的数据,如下图所示的表格中的学生信息,应该来自于后台,那么我们的后台和前端是互不影响的2个程序,那么我们前端应该如何从后台获取数据呢?因为是2个程序…...
[leetcode](找到vector中的特定元素并删除)无重复字符的最长子串
一.找到vector中的特定元素并删除 #include <iostream> #include <vector> #include <algorithm> int main() { // 示例 vector std::vector<int> vec {1, 2, 3, 4, 5, 6}; // 要删除的元素 int aim 3; // 查找元素 auto it std::fin…...
Mockito+PowerMock+Junit单元测试
一、单元测试用途 1、日常开发团队要求规范,需要对开发需求代码进行单元测试并要求行覆盖率达到要求,DevOps流水线也会开设相关门禁阀值阻断代码提交,一般新增代码行覆盖率80%左右。 二、Mock测试介绍 1、Mock是为了解决不同的单元之间由于…...
Ncat: bind to :::7777: Address already in use报错问题解决
问题描述 Ncat: bind to :::7777: Address already in use. QUITTING. 具体解决方法 If you are in linux environment try, Use netstat -tulpn to display the processeskill -9 <pid> This will terminate the process If you are using windows, Use netstat -…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
WEB3全栈开发——面试专业技能点P4数据库
一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库,基于 mysql 库改进而来,具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点: 支持 Promise / async-await…...
STM32标准库-ADC数模转换器
文章目录 一、ADC1.1简介1. 2逐次逼近型ADC1.3ADC框图1.4ADC基本结构1.4.1 信号 “上车点”:输入模块(GPIO、温度、V_REFINT)1.4.2 信号 “调度站”:多路开关1.4.3 信号 “加工厂”:ADC 转换器(规则组 注入…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
OPENCV图形计算面积、弧长API讲解(1)
一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积,这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能,常用的API…...
