用sklearn运行分类模型,选择AUC最高的模型保存模型权重并绘制AUCROC曲线(以逻辑回归、随机森林、梯度提升、MLP为例)
诸神缄默不语-个人CSDN博文目录
文章目录
- 1. 导入包
- 2. 初始化分类模型
- 3. 训练、测试模型,绘图,保存指标
1. 导入包
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import roc_auc_score,accuracy_score,roc_curve,auc
import joblib
import matplotlib.pyplot as plt
2. 初始化分类模型
classifiers = {"Logistic Regression": LogisticRegression(),"Random Forest": RandomForestClassifier(),"GBDT": GradientBoostingClassifier(),"MLP": MLPClassifier(max_iter=1000)
}
3. 训练、测试模型,绘图,保存指标
在这里省略了数据处理部分,总之X/Y都是np.ndarray对象。f反正你创建一个可写的文件流就行,如果连这个都不会的话参考我写的这篇博文:Python3对象序列化,即处理JSON、XML和文件(持续更新ing…)。
f.close()没写,根据你的需要如果想加就加。
这个逻辑是每次得到AUC最高的模型就画图,其实感觉把模型权重储存下来然后再joblib.load()再画图会更合适……
如果想对每个模型画ROC曲线叠在一张图上的话,在最前面新建画布(plt.figure()),每个模型运行完后都运行一次plt.plot(),不close()就行。
max_auc = 0
max_acc = 0
best_classifier = ""
# 训练模型
for lr_name, lr in classifiers.items():lr.fit(X_train, y_train)# 预测y_pred = lr.predict(X_test)y_pred_proba = lr.predict_proba(X_test)[:, 1]# 评估auc_score = roc_auc_score(y_test, y_pred_proba)acc = accuracy_score(y_test, y_pred)if auc_score > max_auc:max_auc = auc_scoremax_acc = accbest_classifier = lr_namejoblib.dump(lr, f"model.pkl")fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)roc_auc = auc(fpr, tpr)plt.figure()plt.plot(fpr,tpr,color="darkorange",lw=2,label=f"ROC curve (AUC = {roc_auc:.2f})",)plt.plot([0, 1], [0, 1], color="navy", lw=2, linestyle="--") # 随机猜测基线plt.xlim([0.0, 1.0])plt.ylim([0.0, 1.05])plt.xlabel("False Positive Rate")plt.ylabel("True Positive Rate")plt.title("Receiver Operating Characteristic")plt.legend(loc="lower right")plt.grid()plt.savefig("roc.png")plt.close()f.write(f"{lr_name} AUC: {auc_score:.4f}, ACC: {acc:.4f}"+ "\n")f.flush()f.write(f"best_classifier: {best_classifier} AUC: {max_auc:.4f}, ACC: {max_acc:.4f}"+ "\n"
)
f.flush()
相关文章:
用sklearn运行分类模型,选择AUC最高的模型保存模型权重并绘制AUCROC曲线(以逻辑回归、随机森林、梯度提升、MLP为例)
诸神缄默不语-个人CSDN博文目录 文章目录 1. 导入包2. 初始化分类模型3. 训练、测试模型,绘图,保存指标 1. 导入包 from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClass…...
动手学大数据-3社区开源实践
目录 数据库概览: MaxComput: HAWQ: Hologres: TiDB: Spark: ClickHouse: Apache Calcite 概览 Calcite RBO HepPlanner 优化规则(Rule) 内置有100优化规则 …...
使用Pydantic驾驭大模型
本文介绍Pydantic 库,首先介绍其概念及优势,然后通过基本示例展示如何进行数据验证。后面通过多个示例解释如何在LangChain中通过Pydantic进行数据验证,保证与大模型进行交互过程中数据准确性,并显示清晰的数验证错误信息。 Pydan…...
【HarmonyOS之旅】基于ArkTS开发(二) -> UI开发之常见布局
目录 1 -> 自适应布局 1.1 -> 线性布局 1.1.1 -> 线性布局的排列 1.1.2 -> 自适应拉伸 1.1.3 -> 自适应缩放 1.1.4 -> 定位能力 1.1.5 -> 自适应延伸 1.2 -> 层叠布局 1.2.1 -> 对齐方式 1.2.2 -> Z序控制 1.3 -> 弹性布局 1.3.1…...
【论文投稿】Python 网络爬虫:探秘网页数据抓取的奇妙世界
目录 前言 一、Python—— 网络爬虫的绝佳拍档 二、网络爬虫基础:揭开神秘面纱 (一)工作原理:步步为营的数据狩猎 (二)分类:各显神通的爬虫家族 三、Python 网络爬虫核心库深度剖析 &…...
队列的基本用法
以下是关于 C 语言中队列的详细知识,包括队列的生成、相关函数使用以及其他重要概念: 一、队列的概念 队列是一种线性数据结构,它遵循先进先出(First In First Out,FIFO)的原则,就像日常生活中…...
网络安全VS数据安全
关于网络安全和数据安全,我们常听到如下两种不同声音: 观点一:网络安全是数据安全的基础,把当年做网络安全的那一套用数据安全再做一遍。 观点二:数据安全如今普遍以为是网络安全的延伸,实际情况是忽略数据…...
Linux(NFS服务)
赛题拓扑: 题目: NFS: 共享/webdata/目录。用于存储AppSrv主机的WEB数据。仅允许AppSrv主机访问该共享。 [rootstoragesrv ~]# yum install nfs-utils -y [rootstoragesrv ~]# mkdir /webdata [rootstoragesrv ~]# chmod -R ow /webdata …...
python编程-OpenCV(图像读写-图像处理-图像滤波-角点检测-边缘检测)边缘检测
OpenCV中边缘检测四种常用算子: (1)Sobel算子 Sobel算子是一种基于梯度的边缘检测算法。它通过对图像进行卷积操作来计算图像的梯度,并将梯度的大小作为边缘的强度。它使用两个3x3的卷积核,分别用于计…...
SSM课设-学生管理系统
【课设者】SSM课设-学生管理系统 技术栈: 后端: SpringSpringMVCMybatisMySQLJSP 前端: HtmlCssJavaScriptEasyUIAjax 功能: 学生端: 登陆 学生信息管理 个人信息管理 老师端: 多了教师信息管理 管理员端: 多了班级信息管理 多了年级信息管理 多了系统用户管理...
【Pytorch实用教程】TCN(Temporal Convolutional Network,时序卷积网络)简介
文章目录 TCN的基本特点TCN的优点TCN的应用场景典型的TCN架构总结TCN(Temporal Convolutional Network,时序卷积网络)是一种用于处理序列数据的深度学习模型,尤其适用于时间序列预测、语音识别、自然语言处理等任务。它利用卷积神经网络(CNN)来处理时序数据,相比于传统的…...
网络安全 | 什么是正向代理和反向代理?
关注:CodingTechWork 引言 在现代网络架构中,代理服务器扮演着重要的角色。它们在客户端和服务器之间充当中介,帮助管理、保护和优化数据流。根据代理的工作方向和用途,代理服务器可分为正向代理和反向代理。本文将深入探讨这两种…...
3 前端(中):JavaScript
文章目录 前言:JavaScript简介一、ECMAscript(JavaScript基本语法)1 JavaScript与html结合方式(快速入门)2 基本知识(1)JavaScript注释(和Java注释一样)(2&am…...
VIT论文阅读与理解
transform网络结构 vision transform网络结构 图1:模型概述。我们将图像分割成固定大小的补丁,线性嵌入每个补丁,添加位置嵌入,并将结果向量序列馈送到标准Transformer编码器。为了执行分类,我们使用标准方法向序列中添…...
JavaScript笔记APIs篇01——DOM获取与属性操作
黑马程序员视频地址:黑马程序员前端JavaScript入门到精通全套视频教程https://www.bilibili.com/video/BV1Y84y1L7Nn?vd_source0a2d366696f87e241adc64419bf12cab&spm_id_from333.788.videopod.episodes&p78https://www.bilibili.com/video/BV1Y84y1L7Nn?…...
SQL表间关联查询详解
简介 本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(left join)、右连接(right join)、全连接(full join)、内连接(inner join)、交叉连接&…...
select函数
系统调用 select()可用于执行 I/O 多路复用操作,调用 select()会一直阻塞,直到某一个或多个文件描述符成为就绪态(可以读或写)。其函数原型如下所示: #include <sys/select.h> int select(int nfds, fd_set *re…...
建造者模式(或者称为生成器(构建器)模式)
一、什么是建造者模式? 将复杂对象的构建与表示进行分离,使得统一的构建过程,可以创建出不同的对象表现模式 就是将复杂对象里面的成员变量,设置不同的值,使得生成出来的对象拥有不同的属性值; 二、特点…...
【深度学习】Huber Loss详解
文章目录 1. Huber Loss 原理详解2. Pytorch 代码详解3.与 MSELoss、MAELoss 区别及各自优缺点3.1 MSELoss 均方误差损失3.2 MAELoss 平均绝对误差损失3.3 Huber Loss 4. 总结4.1 优化平滑4.2 梯度较好4.3 为什么说 MSE 是平滑的 1. Huber Loss 原理详解 Huber Loss 是一种结合…...
A5.Springboot-LLama3.2服务自动化构建(二)——Jenkins流水线构建配置初始化设置
下面我们接着上一篇文章《A4.Springboot-LLama3.2服务自动化构建(一)——构建docker镜像配置》继续往下分析,在自动化流水线构建过程当中的相关初始化设置和脚本编写。 一、首先需要先安装Jenkins 主部分请参考我前面写的一篇文章《Jenkins持续集成与交付安装配置》 二、…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
