如何让大语言模型更好地理解科学文献?
论文地址:https://arxiv.org/pdf/2408.15545
引言
科学文献的理解对于提取目标信息和获取洞察至关重要,这显著推动了科学发现。尽管大语言模型(LLMs)在自然语言处理方面取得了显著成功,但在科学文献理解方面仍面临挑战,主要由于缺乏科学知识和对特定科学任务的不熟悉。为了开发专门用于科学文献理解的LLM,我们提出了一种混合策略,结合持续预训练(CPT)和监督微调(SFT),以同时注入科学领域知识和增强特定任务的指令遵循能力。
1. 持续预训练(CPT)阶段
1.1 格式与语法校正
在从PDF文档中提取文本时,常常会引入许多格式和语法错误。为了解决这一问题,我们使用Llama3-8B-Instruct模型来校正这些错误。以下是一个校正前后的示例:
校正前的文本:
Highly p e n e t r a t i n g radiation, such as $\gamma$ -rays or fast electorns, deposits ener gy
throughout the solid t a r g e t material. Gas production occurs w i t h i n the solid phase and must d i f f u s e to the surface to be observed.
校正后的文本:
Highly penetrating radiation, such as $\gamma$ -rays or fast electrons, deposits energy throughout the solid target material. Gas production occurs within the solid phase and must diffuse to the surface to be observed.

1.2 CPT质量过滤
为了确保训练语料的高质量,我们使用Llama3-70B-Instruct模型对50k个样本进行评分,并根据评分结果过滤掉质量较低的25%数据。以下是评分分布图:

2. 监督微调(SFT)阶段
2.1 指令生成
为了生成多样化的科学指令,我们设计了一个三步流程:
- 领域关键词概率表:收集高影响力论文并统计词频,生成领域关键词概率表。
- 科学任务列表:编译一个包含各种科学任务的任务列表。
- 指令生成:根据关键词和任务描述生成科学上下文和相应的问答对。
以下是一个生成表格提取任务的示例:
生成表格提取任务的提示:
I need synthetic training data for training a machine learning model that extracts tables from text correctly. The data should be formatted in JSON, with each entry containing ”text” and ”answer” attributes. You should generate a paragraph that includes the keywords: $\{\{\mathrm{keywords}\}\}$ .
The ”text” part must contain enough information for the table to be extracted! In ”text” part, You must you include a table description in latex format.
生成的示例:
{
”text”: ”In recent studies regarding material science, the crmatrix has shown significant importance in understanding fracture behaviors. The following Table 1 presents a schematic illustration of the enthalpy changes observed during the different fracture phases.”,
”answer”: ”Material,Initial Enthalpy (kJ/mol),Final Enthalpy (kJ/mol),Fracture Phase
Material A,25.4,47.8,Brittle
Material B,22.3,45.0,Ductile
Material C,28.9,50.2,Semi-brittle”
}
2.2 指令质量控制
为了确保生成指令的质量,我们采用启发式去重和基于LLM的过滤方法。以下是评估示例:

3. 实验结果
3.1 基准模型性能
SciLitLLM在科学文献理解任务上表现优异,7B和14B版本的模型在SciAssess和SciRIFF基准测试中均取得了领先的成绩。具体来说,SciLitLLM-7B在SciAssess上比第二好的模型高出4.0%,在SciRIFF上高出10.1%。
3.2 消融研究
我们进行了消融实验来验证CPT阶段、SFT数据配方和指令质量过滤的有效性。结果表明,CPT阶段对提高科学文献理解能力至关重要,而SFT阶段使用SciLitIns数据集也能显著提升模型性能。

4. 结论与未来工作
本文介绍了SciLitLLM,一个专门用于科学文献理解的模型。通过CPT和SFT的结合,我们成功地提升了模型在科学领域的知识基础和指令遵循能力。未来的工作将致力于扩展训练数据的多样性和质量,并探索更高效的方法进行领域特定知识注入和高品质指令生成。
参考文献
- Cai, H., Cai, X., Chang, J., Li, S., Yao, L., Wang, C., … & Ke, G. (2024). Sciassess: Benchmarking LLM proficiency in scientific literature analysis. arXiv preprint arXiv:2403.01976.
- Wadden, D., Shi, K., Morrison, J., Naik, A., Singh, S., Barzilay, N., … & Cohan, A. (2024). Sciriff: A resource to enhance language model instruction-following over scientific literature. arXiv preprint arXiv:2406.07835.
希望这篇文章对你有所帮助!如果你有任何问题或建议,欢迎在评论区留言。
相关文章:
如何让大语言模型更好地理解科学文献?
论文地址:https://arxiv.org/pdf/2408.15545 引言 科学文献的理解对于提取目标信息和获取洞察至关重要,这显著推动了科学发现。尽管大语言模型(LLMs)在自然语言处理方面取得了显著成功,但在科学文献理解方面仍面临挑战…...
anaconda安装和环境配置
文章目录 一、Anaconda下载1.从官网直接下载:2.从镜像站中下载: 二、Anaconda安装三、检测是否有Anaconda配置anaconda环境 四、 Anaconda创建多个python环境(方便管理项目环境)1.查看conda有哪些环境2.创建python3.6的环境3.激活…...
Python基础学习(五)文件和异常
文件操作, 使用代码 来读写文件 1, 可以将数据保存到文件中, 2, 自动化, 测试数据在文件中保存的, 从文件中读取测试数据,进行自动化代码的执行 1.文件 文件: 可以存储在长期存储设备(硬盘, U盘)上的一段数据即为文件 1, 计算机只认识 二进制数据(0 和 1) 2, 所有的文件在计算…...
Mono里运行C#脚本29—mono_trampolines_init
一、概念解释 在计算机编程中,trampoline 通常是一段代码,它起到一个中间跳转的作用。它就像一个跳板,程序可以先跳转到这个跳板上,然后再从跳板跳转到最终的目的地。这种技术在许多不同的场景中都有应用,以下是一些主要方面: 函数调用方面: 当涉及到不同执行环境或不…...
从语音识别到图像识别:AI如何“看”和“听”
引言 随着人工智能技术的不断进步,AI的“听”和“看”能力正变得越来越强大。从语音识别到图像识别,AI不仅能够通过声音与我们互动,还能通过视觉理解和分析周围的世界。这些技术不仅改变了我们与机器的交互方式,也在各行各业中带…...
vue3+ts+uniapp 微信小程序(第一篇)—— 微信小程序定位授权,位置信息权限授权
文章目录 简介一、先看效果1.1 授权定位前,先弹出隐私协议弹框1.2 上述弹框点击同意,得到如下弹框1.3 点击三个点,然后点设置 1.4 在1.2步骤下,无论同意或者拒绝 二、manifest.json 文件配置三、微信公众平台配置3.1 登录进入微信…...
回归算法、聚类算法、决策树、随机森林、神经网络
这也太全了!回归算法、聚类算法、决策树、随机森林、神经网络、贝叶斯算法、支持向量机等十大机器学习算法一口气学完!_哔哩哔哩_bilibili 【线性回归、代价函数、损失函数】动画讲解_哔哩哔哩_bilibili 14分钟详解所有机器学习算法:…...
[Qt]系统相关-文件操作-QFile、QFileInfo类以及相关操作函数
目录 一、Qt文件系统 1.Qt文件系统的介绍 2.Qt文件类 二、Qt文件的操作 1.文件的打开 2.文件的读写操作 3.关闭操作 4.接口使用案例 5.获取文件的相关属性 三、文件的分类 1.文本文件 2.二进制文件 3.二者的区别 一、Qt文件系统 1.Qt文件系统的介绍 文件操作是所…...
C#高级:用Csharp操作鼠标和键盘
一、winform 1.实时获取鼠标位置 public Form1() {InitializeComponent();InitialTime(); }private void InitialTime() {// 初始化 Timer 控件var timer new System.Windows.Forms.Timer();timer.Interval 100; // 设置为 100 毫秒,即每 0.1 秒更新一次timer.…...
Mac 使用 GVM 管理多版本 Go 环境
使用 GVM 管理多版本 Go 环境 在本文中,我们将使用 gvm(Go Version Manager)工具管理本地多个 Go 语言版本。gvm 功能类似于 Python 的 Anaconda,可以方便地切换不同版本的 Go 环境,非常适合需要多版本开发与测试的场…...
25届合肥工业大学自动化考研复试攻略
本文内容,全部选自联盟自动化考研联盟企业店的:《合肥工业大学控制综合笔试篇》。后续会持续更新更多内容,记得关注哦~ 目录 Part1:复试指南具体内容 Part2:复试复习相关介绍 Part1:复试指南具体内容 1…...
【24】Word:小郑-准考证❗
目录 题目 准考证.docx 邮件合并-指定考生生成准考证 Word.docx 表格内容居中表格整体相较于页面居中 考试时一定要做一问保存一问❗ 题目 准考证.docx 插入→表格→将文本转换成表格→✔制表符→确定选中第一列→单击右键→在第一列的右侧插入列→布局→合并单元格&#…...
前瞻2024:前沿技术的全景洞察与深度剖析
在当今时代,前沿技术以前所未有的速度发展,深刻地改变着我们的生活、工作和社会的各个层面。从人工智能的迅猛发展到量子计算的逐步突破,从生物技术的不断创新到新能源技术的广泛应用,这些前沿技术正成为推动社会进步和经济发展的…...
告别手动编辑:如何用Python快速创建Ansible hosts文件?
在自动化运维领域,Ansible是一款非常强大的工具,它可以帮助我们管理和配置大量的服务器。为了让Ansible能够有效地管理这些服务器,我们需要一个hosts清单文件,该文件定义了Ansible要管理的目标主机。在实际应用中,我们…...
ESP32云开发二( http + led + lcd)
文章目录 前言先上效果图platformio.iniwokwi.tomldiagram.json源代码编译编译成功上传云端完结撒花⭐⭐⭐⭐⭐ 前言 阅读此篇前建议先看 此片熟悉下wokwi https://blog.csdn.net/qq_20330595/article/details/144289986 先上效果图 Column 1Column 2 platformio.ini wokwi…...
Java 基于微信小程序的原创音乐小程序设计与实现(附源码,部署,文档)
大家好,我是stormjun,今天为大家带来的是Java实战项目-基于微信小程序的原创音乐小程序设计与实现。该系统采用 Java 语言 开发,MySql 作为数据库,系统功能完善 ,实用性强 ,可供大学生实战项目参考使用。 博…...
JavaWeb开发(十五)实战-生鲜后台管理系统(二)注册、登录、记住密码
1. 生鲜后台管理系统-注册功能 1.1. 注册功能 (1)创建注册RegisterServlet,接收form表单中的参数。 (2)service创建一个userService处理业务逻辑。 (3)RegisterServlet将参数传递给ser…...
在stm32中C语言编写的程序中,一个整形数据是怎么存储的,高位在前还是低位在前
目录 举个例子 如何验证 小结 在 STM32(基于 ARM Cortex-M 架构)的系统中,默认是小端(Little Endian) 存储方式。也就是说,对于一个整型(例如 32 位 int),它的最低有效…...
Redis系列之底层数据结构字典Dict
Redis系列之底层数据结构字典Dict Dict数据结构 Dict是Redis数据结构中使用最为频繁的复合型数据结构,本质上是一个哈希表 查看redis6.0版本的源码,链接:https://github.com/redis/redis/blob/6.0/src/dict.h 哈希表的结构定义࿱…...
CSS 溢出问题及解决方案:实用案例与技巧
在网页开发中,CSS 的布局和样式起着至关重要的作用,但经常会遇到一个棘手的问题——溢出问题。溢出是指元素内的内容超出了其设定的容器大小,这不仅会影响页面的美观,还可能干扰用户体验。本文将详细探讨 CSS 溢出问题的案例&…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
